Molecular Pathways to Polyglutamine Aggregation

  • Amy L. Robertson
  • Stephen P. BottomleyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Over 100 human cellular proteins contain a repetitive polyglutamine tract, however, only nine of these proteins are associated with disease. In these proteins, the expanded polyQ tract perturbs the native conformation, resulting in an ordered aggregation process that leads to the formation of amyloid-like fibrils. The misfolding pathway involves the formation of prefibrillar oligomeric structures, which are proposed to be involved in cellular toxicity. Non-polyQ host protein regions modulate the misfolding pathway, suggesting an importance of protein context in aggregation. This chapter describes the current research regarding polyQ misfolding, with emphasis on the species populated during aggregation, suggesting an important role of protein context in modulating the aggregation pathway.


Saturation Transfer Difference polyQ Protein Tandem Repeat Polymorphism polyQ Tract polyQ Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75:333–366.CrossRefGoogle Scholar
  2. 2.
    Anfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181(96):223–230.CrossRefGoogle Scholar
  3. 3.
    Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 2008; 469(1):100–117.CrossRefGoogle Scholar
  4. 4.
    Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 2003; 81(11):678–699.CrossRefGoogle Scholar
  5. 5.
    Ordway JM, Tallaksen-Greene S, Gutekunst CA et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 1997; 91(6):753–763.CrossRefGoogle Scholar
  6. 6.
    Tanaka M, Morishima I, Akagi T et al. Intra-and intermolecular beta-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J Biol Chem 2001; 276(48):45470–45475.CrossRefGoogle Scholar
  7. 7.
    Robertson AL, Home J, Ellisdon AM et al. The structural impact of a polyglutamine tract is location-dependent. Biophys J 2008; 95(12):5922–5930.CrossRefGoogle Scholar
  8. 8.
    Ferrone F. Analysis of protein aggregation kinetics. Methods Enzymol 1999; 309:256–274.CrossRefGoogle Scholar
  9. 9.
    Kheterpal I, Cook KD, Wetzel R. Hydrogen/deuterium exchange mass spectrometry analysis of protein aggregates. Methods Enzymol 2006; 413:140–166.CrossRefGoogle Scholar
  10. 10.
    Chen S, Ferrone FA, Wetzel R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci U S A 2002; 99(18):11884–11889.CrossRefGoogle Scholar
  11. 11.
    Ellisdon AM, Pearce MC, Bottomley SP. Mechanisms of ataxin-3 misfolding and fibril formation: kinetic analysis of a disease-associated polyglutamine protein. J Mol Biol 2007; 368(2):595–605.CrossRefGoogle Scholar
  12. 12.
    Ignatova Z, Gierasch LM. Extended polyglutamine tracts cause aggregation and structural perturbation of an adjacent beta barrel protein. J Biol Chem 2006; 281(18):12959–12967.CrossRefGoogle Scholar
  13. 13.
    Bhattacharyya AM, Thakur AK, Wetzel R. polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci U S A 2005; 102(43): 15400–15405.CrossRefGoogle Scholar
  14. 14.
    Wang X, Vitalis A, Wyczalkowski MA et al. Characterizing the conformational ensemble of monomeric polyglutamine. Proteins 2006; 63(2):297–311.CrossRefGoogle Scholar
  15. 15.
    Vitalis A, Lyle N, Pappu RV. Thermodynamics of beta-sheet formation in polyglutamine. Biophys J 2009; 97(1):303–311.CrossRefGoogle Scholar
  16. 16.
    Dumoulin M, Canet D, Last AM et al. Reduced global co-operativity is a common feature underlying the amyloidogenicity of pathogenic lysozyme mutations. J Mol Biol 2005; 346(3):773–788.CrossRefGoogle Scholar
  17. 17.
    Booth DR, Sunde M, Bellotti V et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 1997; 385(6619):787–793.CrossRefGoogle Scholar
  18. 18.
    Faux NG, Bottomley SP, Lesk AM et al. Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res 2005; 15(4):537–551.CrossRefGoogle Scholar
  19. 19.
    Chow MK, Ellisdon AM, Cabrita LD et al. Polyglutamine expansion in ataxin-3 does not affect protein stability: implications for misfolding and disease. J Biol Chem 2004; 279(46):47643–47651.CrossRefGoogle Scholar
  20. 20.
    Wellington CL, Ellerby LM, Hackam AS et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 1998;273(15):9158–9167.CrossRefGoogle Scholar
  21. 21.
    Goti D, Katzen SM, Mez J et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci 2004; 24(45): 10266–10279.CrossRefGoogle Scholar
  22. 22.
    Nucifora FC Jr, Ellerby LM, Wellington CL et al. Nuclear localization of a noncaspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J Biol Chem 2003; 278(15):13047–13055.CrossRefGoogle Scholar
  23. 23.
    Rambaran RN, Serpell LC. Amyloid fibrils: abnormal protein assembly. Prion 2008; 2(3): 112–117.CrossRefGoogle Scholar
  24. 24.
    Wanker EE, Scherzinger E, Heiser V et al. Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol 1999; 309:375–386.CrossRefGoogle Scholar
  25. 25.
    Perutz MF, Johnson T, Suzuki M et al. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A 1994; 91(12):5355–5358.CrossRefGoogle Scholar
  26. 26.
    Uversky VN. Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 2008; 5(3):260–287.CrossRefGoogle Scholar
  27. 27.
    Legleiter J, Mitchell E, Lotz GP et al. Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem 2010; 285(19):14777–14790.CrossRefGoogle Scholar
  28. 28.
    La Spada AR, Wilson EM, Lubahn DB et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352(6330):77–79.CrossRefGoogle Scholar
  29. 29.
    Banfi S, Servadio A, Chung MY et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 1994; 7(4):513–520.CrossRefGoogle Scholar
  30. 30.
    Benomar A, Krols L, Stevanin G et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3pl2-p21.1. Nat Genet 1995; 10(1):84–88.CrossRefGoogle Scholar
  31. 31.
    David G, Abbas N, Stevanin G et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17(1):65–70.CrossRefGoogle Scholar
  32. 32.
    Takahashi Y, Okamoto Y, Popiel HA et al. Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy. J Biol Chem 2007; 282(33):24039–24048.CrossRefGoogle Scholar
  33. 33.
    Kayed R, Head E, Thompson JL et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003; 300(5618):486–489.CrossRefGoogle Scholar
  34. 34.
    Ding TT, Lee SJ, Rochet JC et al. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution orbound to brain-derived membranes. Biochemistry 2002; 41(32): 10209–10217.CrossRefGoogle Scholar
  35. 35.
    Hyun DH, Lee M, Hattori N et al. Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem 2002; 277(32):28572–28577.CrossRefGoogle Scholar
  36. 36.
    Kheterpal I, Chen M, Cook KD et al. Structural differences in Abeta amyloid protofibrils and fibrils mapped by hydrogen exchange — mass spectrometry with on-line proteolytic fragmentation. J Mol Biol 2006; 361(4):785–795.CrossRefGoogle Scholar
  37. 37.
    Myers SL, Thomson NH, Radford SE et al. Investigating the structural properties of amyloid-like fibrils formed in vitro from beta2-microglobulin using limited proteolysis and electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 2006; 20(11):1628–1636.CrossRefGoogle Scholar
  38. 38.
    Kaylor J, Bodner N, Edridge S et al. Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 2005; 353(2):357–372.CrossRefGoogle Scholar
  39. 39.
    O’Sullivan DB, Jones CE, Abdelraheim SR et al. NMR characterization of the pH 4 beta-intermediate of the prion protein: the N-terminal half of the protein remains unstructured and retains a high degree of flexibility. Biochem J 2007; 401(2):533–540.CrossRefGoogle Scholar
  40. 40.
    Yu L, Edalji R, Harlan JE et al. Structural characterization of a soluble amyloid beta-peptide oligomer. Biochemistry 2009; 48(9):1870–1877.CrossRefGoogle Scholar
  41. 41.
    Huang H, Milojevic J, Melacini G. Analysis and optimization of saturation transfer difference NMR experiments designed to map early self-association events in amyloidogenic peptides. J Phys Chem B 2008; 112(18):5795–5802.CrossRefGoogle Scholar
  42. 42.
    Orte A, Birkett NR, Clarke RW et al. Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proc Natl Acad Sci U S A 2008; 105(38): 14424–14429.CrossRefGoogle Scholar
  43. 43.
    Thakur AK, Jayaraman M, Mishra R et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 2009; 16(4):380–389.CrossRefGoogle Scholar
  44. 44.
    Ellisdon AM, Thomas B, Bottomley SP. The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem 2006; 281(25):16888–16896.CrossRefGoogle Scholar
  45. 45.
    Nozaki K, Onodera O, Takano H et al. Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation. Neuroreport 2001; 12(15):3357–3364.CrossRefGoogle Scholar
  46. 46.
    Bhattacharyya A, Thakur AK, Chellgren VM et al. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 2006; 355(3):524–535.CrossRefGoogle Scholar
  47. 47.
    De Chiara C, Menon RP, Adinolfi S et al. The AXH domain adopts alternative folds the solution structure of HBP1 AXH. Structure 2005; 13(5):743–753.CrossRefGoogle Scholar
  48. 48.
    Burright EN, Davidson JD, Duvick LA et al. Identification of a self-association region within the SCA1 gene product, ataxin-1. Hum Mol Genet 1997; 6(4):513–518.CrossRefGoogle Scholar
  49. 49.
    DiFiglia M, Sapp E, Chase KO et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277(5334): 1990–1993.CrossRefGoogle Scholar
  50. 50.
    Ellerby LM, Andrusiak RL, Wellington CL et al. Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. J Biol Chem 1999; 274(13):8730–8736.CrossRefGoogle Scholar
  51. 51.
    Klein FA, Pastore A, Masino L et al. Pathogenic and nonpathogenic polyglutamine tracts have similar structural properties: towards a length-dependent toxicity gradient. J Mol Biol 2007; 371(1):235–244.CrossRefGoogle Scholar
  52. 52.
    Busch A, Engemann S, Lurz R et al. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington’s disease. J Biol Chem 2003; 278(42):41452–41461.CrossRefGoogle Scholar
  53. 53.
    Masino L, Nicastro G, Menon RP et al. Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containingproteinataxin-3. JMol Biol 2004; 344(4): 1021–1035.CrossRefGoogle Scholar
  54. 54.
    Robertson AL, Headey SJ, Saunders HM et al. Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 2010; 107(23):10424–10429.CrossRefGoogle Scholar
  55. 55.
    Klein AF, Ebihara M, Alexander C et al. PABPN1 polyalanine tract deletion and long expansions modify its aggregation pattern and expression. Exp Cell Res 2008; 314(8):1652–1666.CrossRefGoogle Scholar
  56. 56.
    Fernandez-Bellot E, Guillemet E, Baudin-Baillieu A et al. Characterization of the interaction domains of Ure2p, a prion-like protein of yeast. Biochem J 1999; 338(Pt 2):403–407.CrossRefGoogle Scholar
  57. 57.
    Nagai Y, Tucker T, Ren H et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J Biol Chem 2000; 275(14):10437–10442.CrossRefGoogle Scholar
  58. 58.
    Orr CR, Montie HL, Liu Y et al. An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbar muscular atrophy. J Biol Chem 2010.Google Scholar
  59. 59.
    Snyder-Keller A, McLear JA, Hathorn T et al. Early or Late-Stage Anti-N-Terminal Huntingtin Intrabody Gene Therapy Reduces Pathological Features in B6.HDR6/1 Mice. J Neuropathol Exp Neurol 2010.Google Scholar
  60. 60.
    Southwell AL, Khoshnan A, Dunn DE et al. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci 2008; 28(36):9013–9020.CrossRefGoogle Scholar
  61. 61.
    Legleiter J, Lotz GP, Miller J et al. Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 2009; 284(32):21647–21658.CrossRefGoogle Scholar
  62. 62.
    Muchowski PJ, Schaffar G, Sittler A et al. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 2000; 97(14):7841–7846.CrossRefGoogle Scholar
  63. 63.
    Behrends C, Langer CA, Boteva R et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 2006; 23(6):887–897.CrossRefGoogle Scholar
  64. 64.
    Herbst M, Wanker EE. Small molecule inducers of heat-shock response reduce polyQ-mediated huntingtin aggregation. A possible therapeutic strategy. Neurodegener Dis 2007; 4(2–3):254–260.CrossRefGoogle Scholar
  65. 65.
    Waza M, Adachi H, Katsuno M et al. Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med 2006; 84(8):635–646.CrossRefGoogle Scholar
  66. 66.
    Heiser V, Engemann S, Brocker W et al. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16400–16406.CrossRefGoogle Scholar
  67. 67.
    Zhang X, Smith DL, Meriin AB et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 2005; 102(3):892–897.CrossRefGoogle Scholar
  68. 68.
    Ehrnhoefer DE, Duennwald M, Markovic P et al. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 2006; 15(18):2743–2751.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia

Personalised recommendations