Evolution of Simple Sequence Repeats as Mutable Sites

  • David G. King
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Because natural selection is commonly presumed to minimize mutation rates, the discovery of mutationally unstable simple sequence repeats (SSRs) in many functional genomic locations came as a surprise to many biologists. Whether such SSRs persist in spite of or because of their intrinsic mutability — whether they constitute a genetic burden or an evolutionary boon — remains uncertain. Two contrasting evolutionary explanations can be offered for SSR abundance. First, suppressing the inherent mutability of repetitive sequences might simply lie beyond the reach of natural selection. Alternatively, natural selection might indirectly favor SSRs at sites where particular repeat-number variants have provided positive contributions to fitness. Indirect selection could thereby shape SSRs into “tuning knobs” that facilitate evolutionary adaptation by implementing an implicit protocol of incremental adjustability. The latter possibility is consistent with deep evolutionary conservation of some SSRs, including several in genes with neurological and neurodevelopmental function.


Mutation Rate Repeat Expansion Evolutionary Function Indirect Selection Triplet Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morell V. The puzzle of the triplet repeats. Science 1993; 260:1422–1423.CrossRefGoogle Scholar
  2. 2.
    Hamada H, Scidman M, Howard BH et al. Enhanced gene expression by the poly(dT-dG) poly(dC-dA) sequence. Mol Cellular Biol 1984; 4:2622–2630.CrossRefGoogle Scholar
  3. 3.
    Gerber HP, Scipel K, Georgiev O et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 1994; 263:808–811.CrossRefGoogle Scholar
  4. 4.
    Kashi Y, King DG, Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 1997; 13:74–78.CrossRefGoogle Scholar
  5. 5.
    Li YC, Korol AB, Fahima T et al. Microsatellites within genes: Structure, function and evolution. Mol BiolEvol 2004; 21:991–1007.CrossRefGoogle Scholar
  6. 6.
    Buschiazzo E, Gemmel NJ. Conservation of Human Microsatellites across 450 Million Years of Evolution. Genome Biol Evol 2010; 2:153–165.CrossRefGoogle Scholar
  7. 7.
    Sung W, Tucker A, Bergeron DR et al. Simple sequence repeat variation in the Daphnia pulex genome. BMC Genomics 2010; 11:691. doi:10.1186/1471-2164-11-691.CrossRefGoogle Scholar
  8. 8.
    Darwin CR. On the Origin of Species by Means of Natural Selection. London: John Murray, 1859:131 (Facsimile edition by Harvard University Press, Cambridge, Massachusetts, 1964).Google Scholar
  9. 9.
    de Vries H. The origin of species by mutation. Science 1902; 15:721–729.CrossRefGoogle Scholar
  10. 10.
    Bridges CB. Specific modifiers of eosin eye color in Drosophilamelanogaster. J Exp Zool 1919; 28:337–384.CrossRefGoogle Scholar
  11. 11.
    Sturtevant AH. Essays on evolution. I. On the effects of selection on mutation rate. Q Rev Biol 1937; 12:464–467.CrossRefGoogle Scholar
  12. 12.
    Williams GC. Adaptation and Natural Selection. Princeton: Princeton University Press, 1966:139–141.Google Scholar
  13. 13.
    Sniegowski PD, Gerrish PJ, Johnson T et al. The evolution of mutation rates: separating causes from consequences. BioEssays 2000; 22:1057–1066.CrossRefGoogle Scholar
  14. 14.
    Baer CF, Miyamoto MM, Denver DR. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nature Rev Genet 2007; 8:619–631.CrossRefGoogle Scholar
  15. 15.
    Sniegowski PD, Murphy HA. Evolvability. Current Biology 2006; 16:R831–R834.CrossRefGoogle Scholar
  16. 16.
    Ayala FJ. One hundred fifty years without Darwin are enough! Genome Res 2009; 19:693–699.CrossRefGoogle Scholar
  17. 17.
    Darlington CD. A diagram of evolution. Nature 1978; 276:447–452.CrossRefGoogle Scholar
  18. 18.
    Lennox JG. Teleology. In: Keller EF, Lloyd EA, eds. Keywords in Evolutionary Biology. Cambridge, Massachusetts: Harvard University Press, 1992:324–333.Google Scholar
  19. 19.
    Gould SJ. Darwinism and the expansion of evolutionary theory. Science 1982; 216:380–387.CrossRefGoogle Scholar
  20. 20.
    Maynard Smith J. Evolutionary Genetics. Oxford: Oxford University Press, 1989:55.Google Scholar
  21. 21.
    Shaw RG, Shaw FH, Geyer C. What fraction of mutations reduces fitness? Evolution 2003; 57:686–689.Google Scholar
  22. 22.
    Hadany L, Comeron JM. Why are sex and recombination so common? Ann NY Acad Sci 2008; 1133: 26–43.CrossRefGoogle Scholar
  23. 23.
    Futuyma DJ. Evolutionary Biology, 3rd ed. Sunderland, Massachusetts: Sinauer Associates, 1998: 769.Google Scholar
  24. 24.
    Barry JD. Implicit information in eukaryotic pathogens as the basis of antigenic variation. In: Caporale LH, ed. The Implicit Genome. Oxford: Oxford University Press, 2006:91–106.Google Scholar
  25. 25.
    Bayliss CD, Moxon ER. Repeats and variation in pathogen selection. In: Caporale LH, ed. The Implicit Genome. Oxford: Oxford University Press, 2006:54–76.Google Scholar
  26. 26.
    Arber W. Gene products with evolutionary functions. Proteomics 2005; 5:2280–2284.CrossRefGoogle Scholar
  27. 27.
    King DG, Kashi Y. Mutation rate variation in eukaryotes: evolutionary implications of site-specific mechanisms. Nature Rev Genet 2007; 8. doi:10.1038/nrg2158-c1.CrossRefGoogle Scholar
  28. 28.
    Ellegren H. Microsatellites: Simple sequences with complex evolution. Nat Rev Genet 2004; 5:435–445.CrossRefGoogle Scholar
  29. 29.
    Parker SCJ, Hansen L, Abaan HO et al. Local DNA topography correlates with functional noncoding regions of the human genome. Science 2009; 324:389–392.CrossRefGoogle Scholar
  30. 30.
    Trifonov EN. The multiple codes of nucleotide sequences. Bull Math Biol 1989; 51:417–432.CrossRefGoogle Scholar
  31. 31.
    King DG, Soller M, Kashi Y. Evolutionary tuning knobs. Endeavour 1997; 21:36–40.CrossRefGoogle Scholar
  32. 32.
    Doyle J, Csete M, Caporale L. An engineering perspective: The implicit protocols. In: Caporale LH, ed. The Implicit Genome. Oxford: Oxford University Press, 2006:294–298.Google Scholar
  33. 33.
    Fisher RA. The Genetical Theory of Natural Selection. Oxford: Oxford University Press, 1930.CrossRefGoogle Scholar
  34. 34.
    Levins R. Theory of fitness in a heterogeneous environment. VI. The adaptive significance of mutation. Genetics 1967; 56:163–178.PubMedGoogle Scholar
  35. 35.
    Levins R. Evolution in Changing Environments: Some Theoretical Explorations. Princeton: Princeton University Press, 1968.Google Scholar
  36. 36.
    Orr HA. The population genetics of adaptation: The distribution of factors fixed during adaptive evolution. Evolution 1998; 52:935–949.CrossRefGoogle Scholar
  37. 37.
    Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends Genet 2006; 22:253–259.CrossRefGoogle Scholar
  38. 38.
    Sawyer LA, Sandrelli F, Pasetto C et al. The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: Implications for selection. Genetics 2006; 174:465–480.CrossRefGoogle Scholar
  39. 39.
    Lindqvist C, Laakkonen L, Albert VA. Polyglutamine variation in a flowering time protein correlates with island age in a Hawaiian plant radiation. BMC Evol Biol 2007; 7:105. doi: 10.1186/1471-2148-7-105.CrossRefGoogle Scholar
  40. 40.
    Johnsen A, Fidler AE, Kuhn S et al. Avian Clock gene polymorphism: evidence for a latitudinal cline in allele frequencies. Mol Ecol 2007; 16:4867–4880.CrossRefGoogle Scholar
  41. 41.
    Vinces MD, Legendre M, Caldara M et al. Unstable tandem repeats in promoters confer transcriptional evolvability. Science 2009; 324:1213–1216.CrossRefGoogle Scholar
  42. 42.
    King DG, Soller M. Variation and fidelity: The evolution of simple sequence repeats as functional elements in adjustable genes. In: Wasser SP, ed. Evolutionary Theory and Processes: Modern Perspectives. Dordrecht: Kluwer Academic Publishers, 1999: 65–82.CrossRefGoogle Scholar
  43. 43.
    King DG, Trifonov EN, Kashi Y. Tuning knobs in the genome: Evolution of simple sequence repeats by indirect selection. In: Caporale LH, ed. The Implicit Genome. Oxford: Oxford University Press, 2006:77–90.Google Scholar
  44. 44.
    Kashi Y, King DG. Has simple sequence repeat mutability been selected to facilitate evolution? Isr J Ecol Evol 2006; 52:331–342.CrossRefGoogle Scholar
  45. 45.
    King DG, Kashi Y. Indirect selection for mutability. Heredity 2007; 99:123–124.CrossRefGoogle Scholar
  46. 46.
    Buschiazzo E, Gemmel NJ. The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 2006; 28:1040–1050.CrossRefGoogle Scholar
  47. 47.
    Zhu Y, Strassmann JE, Queller DC. Insertions, substitutions, and the origin of microsatellites. Genet Res Camb 2000; 76:227–236.CrossRefGoogle Scholar
  48. 48.
    Jurka J, Kapitonov VV, Kohany O et al. Repetitive sequences in complex genomes: Structure and evolution. Annu Rev Genomics Hum Genet 2007; 8:241–259.CrossRefGoogle Scholar
  49. 49.
    Oliver KR, Green WK. Transposable elements: powerful facilitators of evolution. BioEssays 2009; 31:703–714.CrossRefGoogle Scholar
  50. 50.
    Kelkar YD, Strubczewski N, Hile SE et al. What is a microsatellite: A computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats. Genome Biol Evol 2010; 2:620–635.CrossRefGoogle Scholar
  51. 51.
    Barbará T, Palma-Silva C, Paggi GM et al. Cross-species transfer of nuclear microsatellite markers: potential and limitations. Molec Ecol 2007; 16:3759–3767.CrossRefGoogle Scholar
  52. 52.
    Riley DE, Krieger JN. Embryonic nervous system genes predominate in searches for dinucleotide simple sequence repeats flanked by conserved sequences. Gene 2009; 429:74–79.CrossRefGoogle Scholar
  53. 53.
    Riley DE, Krieger JN. UTR dinucleotide simple sequence repeat evolution exhibits recurring patterns including regulatory sequence motif replacements. Gene 2009; 429:80–86.CrossRefGoogle Scholar
  54. 54.
    Fondon JW, Hammock EAD, Hannan A et al. Simple sequence repeats: Genetic modulators of brain function and behavior. Trends Neurosci 2008; 31:328–334.CrossRefGoogle Scholar
  55. 55.
    Karlin S, Burge C. Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci USA 1996; 93:1560–1565.CrossRefGoogle Scholar
  56. 56.
    Huntley MA, Mahmood S, Golding BG. Simple sequence in brain and nervous system specific proteins. Genome 2005; 48:291–301.CrossRefGoogle Scholar
  57. 57.
    Labaj PP, Leparc GG, Bardet AF et al. Single amino acid repeats in signal peptides. FEBS Journal 2010; 277:3147–3157.CrossRefGoogle Scholar
  58. 58.
    Huntley MA, Clark AG. Evolutionary analysis of amino acid repeats across the genomes of 12 Drosophila species. Mol Biol Evol 2007; 24:2598–2609.CrossRefGoogle Scholar
  59. 59.
    Birge LM, Pitts ML, Baker RH et al. Length polymorphism and head shape association among genes with polyglutamine repeats in the stalk-eyed fly, Teleopsis dalmanni. BMC Evol Biol 2010; 10:227. doi:10.1186/1471-2148-10-227.CrossRefGoogle Scholar
  60. 60.
    Tompa P. Intrinsically unstructured proteins evolve by repeat expansion. BioEssays 2003; 25:847–855.CrossRefGoogle Scholar
  61. 61.
    Tyedmers J, Madariaga ML, Lindquist S. Prion switching in response to environmental stress. PLoS Biol 2008; 6(11): e294. doi:10.1371/journal.pbio.0060294.CrossRefGoogle Scholar
  62. 62.
    Williams GC. Adaptation and Natural Selection. Princeton: Princeton University Press, 1966:270.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • David G. King
    • 1
  1. 1.Department of Anatomy and Department of ZoologySouthern Illinois University CarbondaleCarbondaleUSA

Personalised recommendations