Advertisement

Bose Einstein Condensates

  • J. T. Mendonça
  • Hugo Terças
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 70)

Abstract

We now turn to the condensate phase of ultra-cold matter. It is known that condensation in cold atomic clouds occurs when the cooling lasers are switched off and for this reason the atom-atom interactions associated with an exchange of scattered photons are no longer present. What remains is short range atom collisions, which are responsible for the occurrence of a new type of mean field potential. Even in a dilute gas, where the collision frequency is very low, this mean field potential is very a important ingredient of the condensate physics, as shown in the next chapters.

Keywords

Density Profile Lower Energy State Gross Pitaevskii Equation Gross Pitaevskii Condensed Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Huang, Bose-Einstein Condensation and Superfluidity (Cambridge University Press, Cambridge, 1995)Google Scholar
  2. 2.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, NewYork, 1975)zbMATHGoogle Scholar
  3. 3.
    J.V. Gomes, M. Belsley, D. Boiron, Phys. Rev. A 77, 026101 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R. Loudon, The Quantum Theory of Light (Oxford Science Publications, Oxford, 1992)Google Scholar
  5. 5.
    R.P. Feynman, Progress in Low Temperature Physics, vol. 1 (North-Holland, Amsterdam, 1955)Google Scholar
  6. 6.
    H.D. Politzer, Phys. Rev. A 54, 5048 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    N. Naraschewsli, R. Glauber, Phys. Rev. A 59, 4595 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Ritter, A. Ottl, T. Donner, T. Bourdel, M. Köhl, T. Esslinger, Phys. Rev. Lett. 98, 090402 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    E.P. Gross, il Nuovo Cimento 20, 454 (1961); J. Math. Phys. 4, 195 (1963)ADSCrossRefGoogle Scholar
  10. 10.
    L.P. Pitaevskii, Zh. Eksp. Teor. Fiz 40, 646 (1961); Sov. Phys. JETP 13, 431 (1961)Google Scholar
  11. 11.
    T.J.M. Boyd, J.J. Sanderson, The Physics of Plasmas (Cambridge University Press, Cambridge, 2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1982)zbMATHGoogle Scholar
  13. 13.
    A.J. Legget, Rev. Mod. Phys. 73, 307 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    G. Baym, C. Pethick, Phys. Rev. Lett. 76, 6 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    E. Madelung, Zeit. für Phys. 40, 322 (1926)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • J. T. Mendonça
    • 1
  • Hugo Terças
    • 2
  1. 1.Instituto Superior TecnicoLisbonPortugal
  2. 2.Université Blaise PascalAubière CedexFrance

Personalised recommendations