Advertisement

Photons in the Ultra-cold Gas

  • J. T. Mendonça
  • Hugo Terças
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 70)

Abstract

In this chapter, we discuss the properties of laser beam propagation in the ultra-cold gas, by focusing mainly our attention on the specific properties of this medium. We first consider the linear and nonlinear dispersion properties of light. The novelty here is that the laser beams used for atom cooling can couple to the low frequency oscillations of the atomic cloud. In particular they can destabilize the hybrid sound inside the gas, therefore generating small scale oscillations, which can be the seed for turbulence in the medium. Under certain conditions, the laser beam can become modulationaly unstable, and photon bubbles can eventually be formed.

Keywords

Dispersion Relation Test Particle Atom Density Density Perturbation Scattered Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.S.Z. Ashraf, A.C. Sharma, K.N. Vyas, J. Phys. Condens. Matter 19, 306201 (2007)CrossRefGoogle Scholar
  2. 2.
    P.R. Berman, X. Xu, Phys. Rev. A 78, 053407 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    R.W. Boyd, Nonlinear Optics (Academic, san Diego, 1992)Google Scholar
  4. 4.
    J.A. Greenberg, B.L. Schmittberger, D.J. Gauthier, Opt. Express 19, 22535 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, London, 1976)Google Scholar
  6. 6.
    N. Henkel, R. Nath, T. Pohl, Phys. Rev. Lett. 104, 195302 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978). Chap.9Google Scholar
  8. 8.
    N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw Hill, New York, 1973)CrossRefGoogle Scholar
  9. 9.
    G. Labeyrie, E. Vaujour, C.A. Müller, D. Delande, C. Miniatura, D. Wilkowski, R. Kaiser, Phys. Rev. Lett. 91, 223904 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Mendonça, R. Kaiser, Phys. Rev. Lett. 108, 033001 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    M.C.W. van Rossum, Th.M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    X. Wang, A. Bhattacharjee, Phys. Plasmas 4, 3759 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    M.S. Wertheim, Phys. Rev. Lett. 10, 321 (1963)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • J. T. Mendonça
    • 1
  • Hugo Terças
    • 2
  1. 1.Instituto Superior TecnicoLisbonPortugal
  2. 2.Université Blaise PascalAubière CedexFrance

Personalised recommendations