Advertisement

Atomic Clouds

  • J. T. Mendonça
  • Hugo Terças
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 70)

Abstract

Here, we consider atom-atom interactions. In a cold gas, for atoms confined in a magneto-optical trap, two types of interactions can be considered. First, we have the close range atom-atom collisions. Second, we have the long range interactions mediated by scattered photons. The atomic collisions play an important role in atom detrapping, in the gas thermalization during evaporative cooling, in the plasma ionization processes, and in the formation of Bose-Einstein condensates. Atom-atom collisions at very low energies have specific properties which have be studied by many authors (see for a review [1, 2]). After reviewing the basic properties of atomic collisions in the low energy limit, we discuss the Feshbach resonances, which result from the coupling with a discrete bound state. In the experiments, such resonances can be controlled by externally applied magnetic fields, and allow to control the atomic collision cross sections.

Keywords

Feshbach Resonance Resonant Scattering Atomic Cloud Laser Beam Intensity Trapping Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Weiner, Cold and Ultracold Collisions in Quantum Microscopic and Mesoscopic Systems (Cambridge University Press, Cambridge/New York, 2003)CrossRefGoogle Scholar
  2. 2.
    J. Weiner, V. Bagnato, S. Zilio, P.S. Julienne, Experiments and theory of cold and ultra cold collisions. Rev. Mod. Phys. 71, 1 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory (Pergamon, Oxford/New York, 1977)Google Scholar
  4. 4.
    H. Feshbach, Ann. Phys. 19, 287 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    U. Fano, Phys. Rev. 124, 1866 (1961)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    W.C. Stwalley, Phys. Rev. Lett. 37, 1628 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    C.G. Townsend, N.H. Edwards, C.J. Cooper, K.P. Zetie, C.J. Foot, A.M. Steane, P. Szriftgiser, H. Perrin, J. Dalibard, Phys. Rev. A 52, 1423 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    L. Pruvost, I. Serre, H.T. Duong, J. Jortner, Phys. Rev. A 61, 053408 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    J. Dalibard, Opt. Commun. 68, 203 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    D.W. Sesko, T.G. Walker, C.E. Wieman, J. Opt. Soc. Am. B 8, 946 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    T. Walker, D. Sesko, C. Wieman, Phys. Rev. Lett. 64, 408 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    B.R. Mollow, Phys. Rev. 188, 1969 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    R. Loudon, The Quantum Theory of Light. Oxford Science Publications, 3rd edn. (Oxford University Press, Oxford/New York, 2000)Google Scholar
  15. 15.
    A.M. Steane, M. Chowdhury, C.J. Foot, J. Opt. Soc. Am. B 9, 2142 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Courier Dover Publications, New York, 1967)Google Scholar
  17. 17.
    I. Last, I. Schek, J. Jortner, J. Chem. Phys. 107, 6685 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    M. Eloy, R. Fonseca, J.T. Mendonçca, R. Bingham, J. Plasma Phys. 73, 635 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • J. T. Mendonça
    • 1
  • Hugo Terças
    • 2
  1. 1.Instituto Superior TecnicoLisbonPortugal
  2. 2.Université Blaise PascalAubière CedexFrance

Personalised recommendations