Skip to main content

Laser Cooling

  • Chapter
  • First Online:
Physics of Ultra-Cold Matter

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 70))

  • 1852 Accesses

Abstract

In this introductory chapter, we first consider the interaction of a two-level atom with a monochromatic laser field, by reviewing the emission and absorption radiation processes, as described by the semi-classical optical Bloch equations. We then discuss the basic principles of laser cooling, using both the momentum and the energy pictures. A simple expression for the laser cooling force is derived and the concept of Doppler temperature limit, characterizing the laser cooling process, is introduced. This is followed by a discussion of magnetic traps, with particular emphasis on the Helmholtz and Ioffe configurations, and a description of the magneto-optical trap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, in the absence of magnetic fields, alkali atoms have degenerate ground states.

  2. 2.

    For experimental reasons, Γ should be multiplied by a factor e  − Δ 2 ∕ R z 2, where Δ = g ∕ ω1, z 2 − g ∕ ω2. z 2represents the gravitational sag between the two clouds and \({R}_{z} = \sqrt{({k}_{B } /\mathcal{M})({T}_{1 } /{\omega }_{1,z }^{2 } + {T}_{2 } /{\omega }_{2,z }^{2 })}\)is the vertical size of the clouds. Near condensation, however, the effect of the sag is negligible and Eq. (2.89) holds. See Ref. [32] and references therein for further details.

References

  1. M.O. Scully, S. Zubairy, Quantum Optics(Cambridge University Press, Cambridge/New York, 1997)

    Book  Google Scholar 

  2. R. Loudon, The Quantum Theory of Radiation(Noth-Holland, Amsterdam, 1958)

    Google Scholar 

  3. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics(Wiley, New York, 1987)

    Google Scholar 

  4. S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985)

    Article  ADS  Google Scholar 

  5. S. Stenholm, The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699 (1986)

    Article  ADS  Google Scholar 

  6. A.L. Migdall, J.V. Prodan, W.D. Philips, T.H. Bergeman, H.J. Metcalf, Phys. Rev. Lett., 54, 2596 (1985)

    Article  ADS  Google Scholar 

  7. J. Fortágh, C. Zimmermann, Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  8. Yu.V. Gott, M.S. Yoffe, V.G. Tel’kovskii, Nucl. Fusion Suppl. Part 3, 1045 (1962)

    Google Scholar 

  9. D.E. Pritchard, Phys. Rev. Lett. 51, 1336 (1983)

    Article  ADS  Google Scholar 

  10. E.L. Raab, M. Printiss, A. Cable, S. Chu, D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987)

    Article  ADS  Google Scholar 

  11. J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989)

    Article  ADS  Google Scholar 

  12. C. Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati, Europhys. Lett. 12, 683 (1990)

    Article  ADS  Google Scholar 

  13. NIST Database, http://physics.nist.gov/PhysRefData/ASD/lines$_-$form.html(2009)

  14. H.F. Hess, Phys. Rev. B 34, 3476 (1986)

    Article  ADS  Google Scholar 

  15. K.B. Davis, M.-O. Mewes, W. Ketterle, Appl. Phys. B 60, 155 (1995)

    Article  ADS  Google Scholar 

  16. W. Ketterle, N.J. van Druten, Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    Article  ADS  Google Scholar 

  17. K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  18. J.M. Doyle, J.C. Sandberg, I.A. Yu, C.L. Cesar, D. Kleppner, T.J. Greytak, Phys. B 194, 13 (1994)

    Article  ADS  Google Scholar 

  19. K.M. O’Hara, M.E. Gehm, S.R. Granate, J.E. Thomas, Phys. Rev. A 64, 051403(R) (2001)

    Google Scholar 

  20. P.J. Tol, W. Hogerworst, W. Vassen, Phys. Rev. A 70, 013404 (2004)

    Article  ADS  Google Scholar 

  21. D. Comparat, A. Fioretti, G. Stern, E. Dimova, B. Laburthe Tolra, P. Pillet, Phys. Rev. A 73, 043410 (2006)

    Article  ADS  Google Scholar 

  22. K. Berg-Sorensen, Phys. Rev. A 55, 1281 (1997)

    Article  ADS  Google Scholar 

  23. O.J. Luiten, M.W. Reynolds, J.T.M. Walraven, Phys. Rev. A 53, 381 (1996)

    Article  ADS  Google Scholar 

  24. R. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics(Wiley, New York, 1975)

    Google Scholar 

  25. J. Tempere, F. Brosens, J.T. Devreese, Solid State Commun. 102, 691 (1997)

    Article  ADS  Google Scholar 

  26. M. Holland, J. Williams, J. Cooper, Phys. Rev. A 55, 3670 (1997)

    Article  ADS  Google Scholar 

  27. H. Wu, E. Arimondo, C.J. Cooper, Phys. Rev. A 55, 3670 (1997)

    Article  Google Scholar 

  28. D. Jaksch, C.W. Gardiner, P. Zoller, Phys. Rev. A 56, 575 (1997)

    Article  ADS  Google Scholar 

  29. M. Yamashita, M. Koashi, N. Imoto, Phys. Rev. A 59, 2243 (1999)

    Article  ADS  Google Scholar 

  30. S. Schiller, C. Lämmerzahl, Phys. Rev. A 68, 053406 (2003)

    Article  ADS  Google Scholar 

  31. C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 78, 586 (1997)

    Article  ADS  Google Scholar 

  32. C. Delannoy, S.G. Murdoch, V. Boyer, V. Josse, P. Bouyer, A. Aspect, Phys. Rev. A 63, 051602(R) (2001)

    Google Scholar 

  33. M. Arndt et al., Phys. Rev. Lett. 79, 625 (1997); H. Wu, C.J. Foot, J. Phys. B 29, L321 (1996); C.R. Monroe et al., Phys. Rev. Lett. 70, 414 (1993); D.W. Snoke, J.P. Wolfe, Phys. Rev. B 39, 4030 (1989)

    Google Scholar 

  34. P.S. Julienne et al., Phys. Rev. Lett. 78, 1880 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mendonça, J.T., Terças, H. (2013). Laser Cooling. In: Physics of Ultra-Cold Matter. Springer Series on Atomic, Optical, and Plasma Physics, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5413-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5413-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5412-0

  • Online ISBN: 978-1-4614-5413-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics