Physics of Rydberg Plasmas

  • J. T. Mendonça
  • Hugo Terças
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 70)


In this chapter, we deal with the expansion and the quasi-equilibrium states of an ultra-cold plasma. We have seen that ultra-cold plasmas can be produced by photoionizing a small cloud of laser-cooled atoms confined in a magneto-optical trap, and subsequently expands into the surrounding vacuum. Two different situations are usually considered in the literature: (i) the ultra-cold atoms are firstly laser excited into high Rydberg states and then the Rydberg gas spontaneously evolves into a plasma; (ii) the ultra-cold atoms are directly ionized by the laser and Rydberg atoms are formed by electron-ion recombination as the plasma expands.


Rydberg State Rydberg Atom Ambipolar Diffusion Atomic Cloud Rydberg Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.R. Bates, I. Mendas, J. Phys. B 8, 1770 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    C. Boisseau, I. Simbotin, R. Coté, Phys. Rev. Lett. 88, 133004 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    M. Bonitz, Phys. Lett. A 221, 85 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    S.G. Brush, H.L. Sahlin, E. Teller, J. Chem. Phys. 45, 2102 (1966)ADSCrossRefGoogle Scholar
  5. 5.
    P.M. Chiakin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, UK, 1998)Google Scholar
  6. 6.
    J.-L. Delcroix, A. Bers, Physique des Plasmas, 2 volumes (CNRS Editions, Paris, 1994)Google Scholar
  7. 7.
    D.H.E. Dubin, T.M. O’Neil, Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys. 71, 87 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    M.R. Flannely, D. Vrinceanu, Phys. Rev. A 68, 030502 (R) (2003)Google Scholar
  9. 9.
    T.F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, UK, 1994)CrossRefGoogle Scholar
  10. 10.
    M.E. Glinski, T. O’Neil, Phys. Fluids B 3, 1279 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    S. Hamaguchi, R.T. Farouki, J. Chem. Phys. 101, 9876 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    R. Heidemenn, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, T. Pfau, Phys. Rev. Lett. 100, 033601 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    S. Ichimaru, Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 1017 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    J.C. Keck, Adv. Chem. Phys. 13, 85 (1967)CrossRefGoogle Scholar
  15. 15.
    T.C. Killian, S.L. Rolston, Phys. Today 63, 46 (2011)CrossRefGoogle Scholar
  16. 16.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Butterworth-Heinemann, Oxford, 1981)Google Scholar
  17. 17.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 1981)Google Scholar
  18. 18.
    E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Butterworth-Heinemann, Oxford, 1981)Google Scholar
  19. 19.
    R. Löw, H. Weimar, U. Raitzsch, R. Heidemann, V. Bendkowsky, B. Butscher, H.P. Büchler, T. Pfau, Phys. Rev. A 80, 033422 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps (Springer, Berlin, 2005)Google Scholar
  21. 21.
    B. Makin, J.C. Keck, Phys. Rev. Lett. 11, 281 (1962)ADSCrossRefGoogle Scholar
  22. 22.
    G. Manfredi, A. Mola, M.R. Feix, Phys. Fluids B 5, 388 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    P. Mansbach, J.C. Keck, Phys. Rev. 181, 275 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Murillo, Phys. Rev. Lett. 87, 115003 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    T. Pohl, H.R. Sadeghpour, P. Schmelcher, Cold and ultracold Rydberg atoms in strong magnetic fields. Phys. Rep 484, 181 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    F. Robicheaux, J.D. Hanson, Phys. Plasmas 10, 2217 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    P.K. Shukla, K. Avinash, Phys. Rev. Lett. 107, 135002 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    W.L. Slattery, G.D. Doolen, H.E. DeWitt, Phys. Rev. A 21, 2087 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    D. Tong et al., Phys. Rev. Lett. 93, 063001 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar
  32. 32.
    V. Vuletic, Nat. Phys. 2, 801 (2006)CrossRefGoogle Scholar
  33. 33.
    T.G. Walker, M. Saffman, Phys. Rev. A 77, 032723 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • J. T. Mendonça
    • 1
  • Hugo Terças
    • 2
  1. 1.Instituto Superior TecnicoLisbonPortugal
  2. 2.Université Blaise PascalAubière CedexFrance

Personalised recommendations