Ultra-cold Plasmas

  • J. T. Mendonça
  • Hugo Terças
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 70)


Traditionally, the concept of plasma, is associated with a very hot gas. It is sometimes considered that the basic four states of matter, solid, liquid, gas and plasma, are the modern counterpart of the ancient elements: Earth, Water, Air and Fire. So, the plasma state corresponds to the possible highest internal energy of the medium, the star material being the most striking example. We can identify a plasma with a medium containing a large fraction of free charged particles, which interact between themselves by long range electromagnetic forces [1, 2, 3]. The Universe is dominated by plasma. The solar corona is a very hot plasma with temperatures around one million degrees Kelvin, from where a plasma flow called the solar wind is emitted and propagates to very large distances, interacting with the Earth magnetosphere. The Earth can be seen as a cold drop in the middle of a hot plasma environment. In the last 50 years, plasma physics has been mainly driven by the quest for a nuclear fusion reactor. It is known that fusion of light elements provides the source of energy of the stars, and is the basis for the Hydrogen bomb, but its use in a controlled and sustained way, for peaceful applications in electrical power plants is still in the far horizon for mankind.


Magnetic Field Line Vlasov Equation Particle Species Collision Term Adiabatic Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.J.M. Boyd, J.J. Sanderson, The Physics of Plasmas (Cambridge University Press, Cambridge, UK, 2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    D.R. Nicholson, Introduction to Plasma Physics (Wiley, New York, 1983)Google Scholar
  3. 3.
    N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973)CrossRefGoogle Scholar
  4. 4.
    T.C. Killian, S. Kulin, S.D. Bergeson, L.A. Orozco, C. Orzel, S.L. Rolston, Phys. Rev. Lett. 83, 4776 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    M.P. Robinson, B.L. Tolra, M.W. Noel, T.F. Gallagher, P. Pillet, Phys. Rev. Lett. 85, 4466 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    D. Ciampini, M. Anderlini, J.H. Muller, F. Fuso, O. Morsch, J.W. Thomsen, E. Arimondo, Phys. Rev. A 66, 043409 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    T.C. Killian, T. Pattard, T. Pohl, J.M. Rost, Phys. Rep. 449, 77 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J.-L. Delcroix, A. Bers, Physique des Plasmas, 2 volumes (CNRS Editions, Paris, 1994)Google Scholar
  9. 9.
    S.D. Bergeson, A. Denning, M. Lyon, F. Robicheaux, Phys. Rev. A 83, 023409 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, New York, 2001)CrossRefGoogle Scholar
  11. 11.
    E.A. Cummings, J.E. Daily, D.S. Durfee, S.D. Bergeson, Phys. Rev. Lett 95, 235001 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Morrison, C.J. Rennick, J.S. Keller, E.R. Grant, Phys. Rev. Lett. 101, 205005 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    S. Dickson, S. Robertson, Phys. Plasmas 17, 033508 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    K. Minami, C. Kojima, T. Ohira, O. Ishihara, IEEE Trans. Plasma Sci. 31, 429 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    B.R. Beck, J. Fajans, J.H. Malmberg, Phys. Plasmas 3, 1250 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    F. Anderegg, D.H.E. Dubin, T.M. O’Neil, C.F. Driscoll, Phys. Rev. Lett. 102, 185001 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J.J. Bollinger, D.J. Wineland, Phys. Rev. Lett. 53, 348 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    E. Fermi, Astrophys. J. 119, 1 (1954)Google Scholar
  19. 19.
    T.G. Northrop, The Adiabatic Motion of Charged Particles (Interscience, New York, 1963)zbMATHCrossRefGoogle Scholar
  20. 20.
    B.V. Chirikov, A Universal instability of many dimensional oscillator systems. Phys. Rep. 52, 265 (1979)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983)zbMATHGoogle Scholar
  22. 22.
    Yu. L. Klimontovich, Statistical Theory of Non-equilibrium Processes in a Plasma (Pergamon, Oxford, 1967)Google Scholar
  23. 23.
    P. Pedri, D. Guéry-Odelin, S. Stringari, Phys. Rev. A 68, 043608 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A. Griffin, T. Nikuni, E. Zaremba, Bose-Condensed Gases at Finite Temperatures (Cambridge University Press, Cambridge, 2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • J. T. Mendonça
    • 1
  • Hugo Terças
    • 2
  1. 1.Instituto Superior TecnicoLisbonPortugal
  2. 2.Université Blaise PascalAubière CedexFrance

Personalised recommendations