Quantum Field Theory of BECs

  • J. T. Mendonça
  • Hugo Terças
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 70)


We now consider the Bogoliubov theory of a Bose Einstein condensate, which describes the phonon field as a quantum field, and allows to study quantum field phenomena at low energies, including vacuum fluctuations and phonon emission. Mechanisms for phonon pair creation from vacuum are similar to those known for photons in quantum electrodynamics, and will be discussed in this chapter. They include: time refraction, the dynamical Casimir effect and Hawking radiation. This last radiation process also allows us to discuss condensate analogues of a gravitational field and the equivalent space-time metric.


Black Hole Bose Einstein Condensate Feshbach Resonance Quantum Vacuum Bogoliubov Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    M. Ueda, Fundamentals and new frontiers of Bose Einstein condensation (World Scientific, Singapore, 2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    A. Retzker, J.I. Cirac, M.B. Plenio, B. Reznik, Phys. Rev. Lett. 101, 110402 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J.T. Mendonça, G. Brodin, M. Marklund, Phys. Lett. A 372, 5621 (2008)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    J.T. Mendonça, A. Guerreiro, Phys. Rev. A 72, 063805 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    V.V. Dodonov, Phys. Scr. 82, 038105 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J.T. Mendonça, Theory of Photon Acceleration (Institute of Physics Publications, Bristol, 2001)CrossRefGoogle Scholar
  8. 8.
    J.T. Mendonça, G. Brodin, M. Marklund, Phys. Lett. A 375, 2665 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M. Novello, M. Visser, G. Volovik, Artificial Black Holes (World Scientific, Singapore, 2002)CrossRefGoogle Scholar
  10. 10.
    C. Barceló, S. Liberati, M. Visser, Class. Quant. Gravit. 18, 1137 (2001)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    C. Barceló, A. Cano, L.J. Garay, G. Jannes, Phys. Rev. D 74, 024008 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    B.F. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 1985)Google Scholar
  13. 13.
    W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    M. Visser, Class. Quant. Gravit. 15, 1767 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    S.W. Hawking, Nature 248, 5443 (1974)CrossRefGoogle Scholar
  16. 16.
    J.L. Roberts, N.R. Claussen, S.L. Cornish, C.E. Wieman, Phys. Rev. Lett. 85, 728 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • J. T. Mendonça
    • 1
  • Hugo Terças
    • 2
  1. 1.Instituto Superior TecnicoLisbonPortugal
  2. 2.Université Blaise PascalAubière CedexFrance

Personalised recommendations