Skip to main content

Abstract

The subjects of immunoseclusion and chronic infection as pertaining to the Lyme disease pathogen, Borrelia burgdorferi, present challenges not only in developing suitable models for study, but also in the accurate interpretation of experimental findings in the context of human disease. The term immunoseclusion has been described as the property of a pathogen to evade host immunity by hiding itself in sites not typically afforded vasculature, also known as immunologically privileged organs or tissues. The ability of the Lyme disease bacterium to disseminate to and invade host cells and tissues may be a contributing factor for circumventing host defenses. However, any relationship between putative immunoseclusion properties of the Lyme disease agent and chronic infection has not been firmly established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguero-Rosenfeld ME (2008) Lyme disease: laboratory issues. Infect Dis Clin North Am 22(2):301–313, vii

    PubMed  Google Scholar 

  • Alban PS, Johnson PW, Nelson DR (2000) Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiology 146(Pt 1):119–127

    CAS  PubMed  Google Scholar 

  • Barthold SW, de Souza MS, Janotka JL, Smith AL, Persing DH (1993) Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol 143(3):959–971

    CAS  PubMed  Google Scholar 

  • Barthold SW, Hodzic E, Tunev S, Feng S (2006) Antibody-mediated disease remission in the mouse model of lyme borreliosis. Infect Immun 74(8):4817–4825

    CAS  PubMed  Google Scholar 

  • Behera AK, Thorpe CM, Kidder JM, Smith W, Hildebrand E, Hu LT (2004) Borrelia burgdorferi-induced expression of matrix metalloproteinases from human chondrocytes requires mitogen-activated protein kinase and Janus kinase/signal transducer and activator of transcription signaling pathways. Infect Immun 72(5):2864–2871

    CAS  PubMed  Google Scholar 

  • Behera AK, Durand E, Cugini C, Antonara S, Bourassa L, Hildebrand E, Hu LT, Coburn J (2008) Borrelia burgdorferi BBB07 interaction with integrin alpha3beta1 stimulates production of pro-inflammatory mediators in primary human chondrocytes. Cell Microbiol 10(2):320–331

    CAS  PubMed  Google Scholar 

  • Berger BW, Johnson RC, Kodner C, Coleman L (1992) Failure of Borrelia burgdorferi to survive in the skin of patients with antibiotic-treated Lyme disease. J Am Acad Dermatol 27(1):34–37

    CAS  PubMed  Google Scholar 

  • Blevins JS, Hagman KE, Norgard MV (2008) Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 8:82

    PubMed  Google Scholar 

  • Boardman BK, He M, Ouyang Z, Xu H, Pang X, Yang XF (2008) Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 76(9):3844–3853

    CAS  PubMed  Google Scholar 

  • Bockenstedt LK, Mao J, Hodzic E, Barthold SW, Fish D (2002) Detection of attenuated, noninfectious spirochetes in Borrelia burgdorferi-infected mice after antibiotic treatment. J Infect Dis 186(10):1430–1437

    PubMed  Google Scholar 

  • Brissette CA, Haupt K, Barthel D, Cooley AE, Bowman A, Skerka C, Wallich R, Zipfel PF, Kraiczy P, Stevenson B (2009a) Borrelia burgdorferi infection-associated surface proteins ErpP, ErpA, and ErpC bind human plasminogen. Infect Immun 77(1):300–306

    CAS  PubMed  Google Scholar 

  • Brissette CA, Bykowski T, Cooley AE, Bowman A, Stevenson B (2009b) Borrelia burgdorferi RevA antigen binds host fibronectin. Infect Immun 77(7):2802–2812

    CAS  PubMed  Google Scholar 

  • Brissette CA, Verma A, Bowman A, Cooley AE, Stevenson B (2009c) The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiology 155(Pt 3):863–872

    CAS  PubMed  Google Scholar 

  • Brorson O, Brorson SH (1997) Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes. Infection 25(4):240–246

    CAS  PubMed  Google Scholar 

  • Brorson O, Brorson SH (1998) In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection 26(3):144–150

    CAS  PubMed  Google Scholar 

  • Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease-a tick-borne spirochetosis? Science 216(4552):1317–1319

    CAS  PubMed  Google Scholar 

  • Cabello FC, Godfrey HP, Newman SA (2007) Hidden in plain sight: Borrelia burgdorferi and the extracellular matrix. Trends Microbiol 15(8):350–354

    CAS  PubMed  Google Scholar 

  • Cadavid D, O’Neill T, Schaefer H, Pachner AR (2000) Localization of Borrelia burgdorferi in the nervous system and other organs in a nonhuman primate model of lyme disease. Lab Invest 80(7):1043–1054

    CAS  PubMed  Google Scholar 

  • Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, Radolf JD (2007) Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65(5):1193–1217

    CAS  PubMed  Google Scholar 

  • Charon NW, Greenberg EP, Koopman MB, Limberger RJ (1992a) Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Res Microbiol 143(6):597–603

    CAS  PubMed  Google Scholar 

  • Charon NW, Goldstein SF, Block SM, Curci K, Ruby JD, Kreiling JA, Limberger RJ (1992b) Morphology and dynamics of protruding spirochete periplasmic flagella. J Bacteriol 174(3):832–840

    CAS  PubMed  Google Scholar 

  • Chmielewski T, Tylewska-Wierzbanowska S (2010) Interactions between Borrelia burgdorferi and mouse fibroblasts. Pol J Microbiol 59(3):157–160

    PubMed  Google Scholar 

  • Cinco M, Cini B, Murgia R, Presani G, Prodan M, Perticarari S (2001) Evidence of involvement of the mannose receptor in adhesion of Borrelia burgdorferi to monocyte/macrophages. Infect Immun 69(4):2743–2747

    CAS  PubMed  Google Scholar 

  • Cluss RG, Silverman DA, Stafford TR (2004) Extracellular secretion of the Borrelia burgdorferi Oms28 porin and Bgp, a glycosaminoglycan binding protein. Infect Immun 72(11):6279–6286

    CAS  PubMed  Google Scholar 

  • Coburn J, Cugini C (2003) Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alphavbeta3. Proc Natl Acad Sci USA 100(12):7301–7306

    CAS  PubMed  Google Scholar 

  • Coburn J, Leong JM, Erban JK (1993) Integrin alpha IIb beta 3 mediates binding of the Lyme disease agent Borrelia burgdorferi to human platelets. Proc Natl Acad Sci USA 90(15):7059–7063

    CAS  PubMed  Google Scholar 

  • Coburn J, Magoun L, Bodary SC, Leong JM (1998) Integrins alpha(v)beta3 and alpha5beta1 mediate attachment of lyme disease spirochetes to human cells. Infect Immun 66(5):1946–1952

    CAS  PubMed  Google Scholar 

  • Coburn J, Fischer JR, Leong JM (2005) Solving a sticky problem: new genetic approaches to host cell adhesion by the Lyme disease spirochete. Mol Microbiol 57(5):1182–1195

    CAS  PubMed  Google Scholar 

  • Coleman JL, Sellati TJ, Testa JE, Kew RR, Furie MB, Benach JL (1995) Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect Immun 63(7):2478–2484

    CAS  PubMed  Google Scholar 

  • Coleman JL, Gebbia JA, Piesman J, Degen JL, Bugge TH, Benach JL (1997) Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89(7):1111–1119

    CAS  PubMed  Google Scholar 

  • Comstock LE, Thomas DD (1989) Penetration of endothelial cell monolayers by Borrelia burgdorferi. Infect Immun 57(5):1626–1628

    CAS  PubMed  Google Scholar 

  • Comstock LE, Fikrig E, Shoberg RJ, Flavell RA, Thomas DD (1993) A monoclonal antibody to OspA inhibits association of Borrelia burgdorferi with human endothelial cells. Infect Immun 61(2):423–431

    CAS  PubMed  Google Scholar 

  • Coutte L, Botkin DJ, Gao L, Norris SJ (2009) Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLoS Pathog 5(2):e1000293

    PubMed  Google Scholar 

  • Cruz AR, Moore MW, La Vake CJ, Eggers CH, Salazar JC, Radolf JD (2008) Phagocytosis of Borrelia burgdorferi, the Lyme disease spirochete, potentiates innate immune activation and induces apoptosis in human monocytes. Infect Immun 76(1):56–70

    CAS  PubMed  Google Scholar 

  • Dorward DW, Fischer ER, Brooks DM (1997) Invasion and cytopathic killing of human lymphocytes by spirochetes causing Lyme disease. Clin Infect Dis 25(Suppl 1):S2–S8

    PubMed  Google Scholar 

  • Dressler F, Whalen JA, Reinhardt BN, Steere AC (1993) Western blotting in the serodiagnosis of Lyme disease. J Infect Dis 167(2):392–400

    CAS  PubMed  Google Scholar 

  • Duray PH, Yin SR, Ito Y, Bezrukov L, Cox C, Cho MS, Fitzgerald W, Dorward D, Zimmerberg J, Margolis L (2005) Invasion of human tissue ex vivo by Borrelia burgdorferi. J Infect Dis 191(10):1747–1754

    PubMed  Google Scholar 

  • Embers ME, Ramamoorthy R, Philipp MT (2004) Survival strategies of Borrelia burgdorferi, the etiologic agent of Lyme disease. Microbes Infect 6(3):312–318

    PubMed  Google Scholar 

  • Embers ME, Liang FT, Howell JK, Jacobs MB, Purcell JE, Norris SJ, Johnson BJ, Philipp MT (2007) Antigenicity and recombination of VlsE, the antigenic variation protein of Borrelia burgdorferi, in rabbits, a host putatively resistant to long-term infection with this spirochete. FEMS Immunol Med Microbiol 50(3):421–429

    CAS  PubMed  Google Scholar 

  • Feder HM Jr, Johnson BJ, O’Connell S, Shapiro ED, Steere AC, Wormser GP, Agger WA, Artsob H, Auwaerter P, Dumler JS et al (2007) A critical appraisal of “chronic Lyme disease”. N Engl J Med 357(14):1422–1430

    CAS  PubMed  Google Scholar 

  • Fischer JR, Parveen N, Magoun L, Leong JM (2003) Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci USA 100(12):7307–7312

    CAS  PubMed  Google Scholar 

  • Fischer JR, LeBlanc KT, Leong JM (2006) Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun 74(1):435–441

    CAS  PubMed  Google Scholar 

  • Fuchs H, Wallich R, Simon MM, Kramer MD (1994) The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl Acad Sci USA 91(26):12594–12598

    CAS  PubMed  Google Scholar 

  • Fuchs H, Simon MM, Wallich R, Bechtel M, Kramer MD (1996) Borrelia burgdorferi induces secretion of pro-urokinase-type plasminogen activator by human monocytes. Infect Immun 64(10):4307–4312

    CAS  PubMed  Google Scholar 

  • Garcia-Monco JC, Fernandez-Villar B, Benach JL (1989) Adherence of the Lyme disease spirochete to glial cells and cells of glial origin. J Infect Dis 160(3):497–506

    CAS  PubMed  Google Scholar 

  • Garcia-Monco JC, Fernandez Villar B, Szczepanski A, Benach JL (1991) Cytotoxicity of Borrelia burgdorferi for cultured rat glial cells. J Infect Dis 163(6):1362–1366

    CAS  PubMed  Google Scholar 

  • Gebbia JA, Coleman JL, Benach JL (2001) Borrelia spirochetes upregulate release and activation of matrix metalloproteinase gelatinase B (MMP-9) and collagenase 1 (MMP-1) in human cells. Infect Immun 69(1):456–462

    CAS  PubMed  Google Scholar 

  • Gilmore RD Jr, Kappel KJ, Dolan MC, Burkot TR, Johnson BJ (1996) Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun 64(6):2234–2239

    CAS  PubMed  Google Scholar 

  • Gilmore RD Jr, Howison RR, Schmit VL, Nowalk AJ, Clifton DR, Nolder C, Hughes JL, Carroll JA (2007) Temporal expression analysis of the Borrelia burgdorferi paralogous gene family 54 genes BBA64, BBA65, and BBA66 during persistent infection in mice. Infect Immun 75(6):2753–2764

    CAS  PubMed  Google Scholar 

  • Gilmore RD Jr, Howison RR, Schmit VL, Carroll JA (2008) Borrelia burgdorferi expression of the bba64, bba65, bba66, and bba73 genes in tissues during persistent infection in mice. Microb Pathog 45(5–6):355–360

    CAS  PubMed  Google Scholar 

  • Girschick HJ, Huppertz HI, Russmann H, Krenn V, Karch H (1996) Intracellular persistence of Borrelia burgdorferi in human synovial cells. Rheumatol Int 16(3):125–132

    CAS  PubMed  Google Scholar 

  • Grab DJ, Lanners H, Martin LN, Chesney J, Cai C, Adkisson HD, Bucala R (1999) Interaction of Borrelia burgdorferi with peripheral blood fibrocytes, antigen-presenting cells with the potential for connective tissue targeting. Mol Med 5(1):46–54

    CAS  PubMed  Google Scholar 

  • Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, Nikolskaia O, Choi KS, Stins MF, Kim KS (2005) Borrelia burgdorferi, host-derived proteases, and the blood–brain barrier. Infect Immun 73(2):1014–1022

    CAS  PubMed  Google Scholar 

  • Grab DJ, Nyarko E, Nikolskaia OV, Kim YV, Dumler JS (2009) Human brain microvascular endothelial cell traversal by Borrelia burgdorferi requires calcium signaling. Clin Microbiol Infect 15(5):422–426

    CAS  PubMed  Google Scholar 

  • Guo BP, Brown EL, Dorward DW, Rosenberg LC, Hook M (1998) Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol 30(4):711–723

    CAS  PubMed  Google Scholar 

  • Hagman KE, Lahdenne P, Popova TG, Porcella SF, Akins DR, Radolf JD, Norgard MV (1998) Decorin-binding protein of Borrelia burgdorferi is encoded within a two-gene operon and is protective in the murine model of Lyme borreliosis. Infect Immun 66(6):2674–2683

    CAS  PubMed  Google Scholar 

  • Hallstrom T, Haupt K, Kraiczy P, Hortschansky P, Wallich R, Skerka C, Zipfel PF (2010) Complement regulator-acquiring surface protein 1 of Borrelia burgdorferi binds to human bone morphogenic protein 2, several extracellular matrix proteins, and plasminogen. J Infect Dis 202(3):490–498

    PubMed  Google Scholar 

  • Hanson MS, Cassatt DR, Guo BP, Patel NK, McCarthy MP, Dorward DW, Hook M (1998) Active and passive immunity against Borrelia burgdorferi decorin binding protein A (DbpA) protects against infection. Infect Immun 66(5):2143–2153

    CAS  PubMed  Google Scholar 

  • Hechemy KE, Samsonoff WA, Harris HL, McKee M (1992) Adherence and entry of Borrelia burgdorferi in Vero cells. J Med Microbiol 36(4):229–238

    CAS  PubMed  Google Scholar 

  • Heilpern AJ, Wertheim W, He J, Perides G, Bronson RT, Hu LT (2009) Matrix metalloproteinase 9 plays a key role in lyme arthritis but not in dissemination of Borrelia burgdorferi. Infect Immun 77(7):2643–2649

    CAS  PubMed  Google Scholar 

  • Hodzic E, Feng S, Holden K, Freet KJ, Barthold SW (2008) Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob Agents Chemother 52(5):1728–1736

    CAS  PubMed  Google Scholar 

  • Hu LT, Perides G, Noring R, Klempner MS (1995) Binding of human plasminogen to Borrelia burgdorferi. Infect Immun 63(9):3491–3496

    CAS  PubMed  Google Scholar 

  • Hu LT, Pratt SD, Perides G, Katz L, Rogers RA, Klempner MS (1997) Isolation, cloning, and expression of a 70-kilodalton plasminogen binding protein of Borrelia burgdorferi. Infect Immun 65(12):4989–4995

    CAS  PubMed  Google Scholar 

  • Hu LT, Eskildsen MA, Masgala C, Steere AC, Arner EC, Pratta MA, Grodzinsky AJ, Loening A, Perides G (2001) Host metalloproteinases in Lyme arthritis. Arthritis Rheum 44(6):1401–1410

    CAS  PubMed  Google Scholar 

  • Hunfeld KP, Ruzic-Sabljic E, Norris DE, Kraiczy P, Strle F (2005) In vitro susceptibility testing of Borrelia burgdorferi sensu lato isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob Agents Chemother 49(4):1294–1301

    CAS  PubMed  Google Scholar 

  • Hunfeld KP, Ruzic-Sabljic E, Norris DE, Kraiczy P, Strle F (2006) Risk of culture-confirmed borrelial persistence in patients treated for erythema migrans and possible mechanisms of resistance. Int J Med Microbiol 296(Suppl 40):233–241

    CAS  PubMed  Google Scholar 

  • Klempner MS (2002) Controlled trials of antibiotic treatment in patients with post-treatment chronic Lyme disease. Vector Borne Zoonotic Dis 2(4):255–263

    PubMed  Google Scholar 

  • Klempner MS, Noring R, Rogers RA (1993) Invasion of human skin fibroblasts by the Lyme disease spirochete, Borrelia burgdorferi. J Infect Dis 167(5):1074–1081

    CAS  PubMed  Google Scholar 

  • Klempner MS, Noring R, Epstein MP, McCloud B, Hu R, Limentani SA, Rogers RA (1995) Binding of human plasminogen and urokinase-type plasminogen activator to the Lyme disease spirochete, Borrelia burgdorferi. J Infect Dis 171(5):1258–1265

    CAS  PubMed  Google Scholar 

  • Klempner MS, Hu LT, Evans J, Schmid CH, Johnson GM, Trevino RP, Norton D, Levy L, Wall D, McCall J et al (2001) Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N Engl J Med 345(2):85–92

    CAS  PubMed  Google Scholar 

  • Kuhlow CJ, Garcia-Monco JC, Coleman JL, Benach JL (2005) Murine microglia are effective phagocytes for Borrelia burgdorferi. J Neuroimmunol 168(1–2):183–187

    CAS  PubMed  Google Scholar 

  • Kurtti TJ, Munderloh UG, Krueger DE, Johnson RC, Schwan TG (1993) Adhesion to and invasion of cultured tick (Acarina: Ixodidae) cells by Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) and maintenance of infectivity. J Med Entomol 30(3):586–596

    CAS  PubMed  Google Scholar 

  • Lagal V, Portnoi D, Faure G, Postic D, Baranton G (2006) Borrelia burgdorferi sensu stricto invasiveness is correlated with OspC-plasminogen affinity. Microbes Infect 8(3):645–652

    CAS  PubMed  Google Scholar 

  • Lane RS, Piesman J, Burgdorfer W (1991) Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol 36:587–609

    CAS  PubMed  Google Scholar 

  • Leong JM, Wang H, Magoun L, Field JA, Morrissey PE, Robbins D, Tatro JB, Coburn J, Parveen N (1998) Different classes of proteoglycans contribute to the attachment of Borrelia burgdorferi to cultured endothelial and brain cells. Infect Immun 66(3):994–999

    CAS  PubMed  Google Scholar 

  • Li X, Liu X, Beck DS, Kantor FS, Fikrig E (2006) Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun 74(6):3305–3313

    CAS  PubMed  Google Scholar 

  • Liang FT, Jacobs MB, Bowers LC, Philipp MT (2002) An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J Exp Med 195(4):415–422

    CAS  PubMed  Google Scholar 

  • Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004a) Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72(10):5759–5767

    CAS  PubMed  Google Scholar 

  • Liang FT, Brown EL, Wang T, Iozzo RV, Fikrig E (2004b) Protective niche for Borrelia burgdorferi to evade humoral immunity. Am J Pathol 165(3):977–985

    PubMed  Google Scholar 

  • Lin B, Kidder JM, Noring R, Steere AC, Klempner MS, Hu LT (2001) Differences in synovial fluid levels of matrix metalloproteinases suggest separate mechanisms of pathogenesis in Lyme arthritis before and after antibiotic treatment. J Infect Dis 184(2):174–180

    CAS  PubMed  Google Scholar 

  • Livengood JA, Gilmore RD Jr (2006) Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect 8(14–15):2832–2840

    CAS  PubMed  Google Scholar 

  • Livengood JA, Schmit VL, Gilmore RD Jr (2008) Global transcriptome analysis of Borrelia burgdorferi during association with human neuroglial cells. Infect Immun 76(1):298–307

    CAS  PubMed  Google Scholar 

  • Ma Y, Sturrock A, Weis JJ (1991) Intracellular localization of Borrelia burgdorferi within human endothelial cells. Infect Immun 59(2):671–678

    CAS  PubMed  Google Scholar 

  • Marques AR (2010) Lyme disease: a review. Curr Allergy Asthma Rep 10(1):13–20

    PubMed  Google Scholar 

  • Marques AR, Stock F, Gill V (2000) Evaluation of a new culture medium for Borrelia burgdorferi. J Clin Microbiol 38(11):4239–4241

    CAS  PubMed  Google Scholar 

  • Miklossy J, Kasas S, Zurn AD, McCall S, Yu S, McGeer PL (2008) Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 5:40

    PubMed  Google Scholar 

  • Miller JC, Stevenson B (2006) Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int J Med Microbiol 296(Suppl 40):185–194

    CAS  PubMed  Google Scholar 

  • Montgomery RR, Nathanson MH, Malawista SE (1993) The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery. J Immunol 150(3):909–915

    CAS  PubMed  Google Scholar 

  • Moore MW, Cruz AR, LaVake CJ, Marzo AL, Eggers CH, Salazar JC, Radolf JD (2007) Phagocytosis of Borrelia burgdorferi and Treponema pallidum potentiates innate immune activation and induces gamma interferon production. Infect Immun 75(4):2046–2062

    CAS  PubMed  Google Scholar 

  • Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, Chaconas G (2008) Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4(6):e1000090

    PubMed  Google Scholar 

  • Murgia R, Cinco M (2004) Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS 112(1):57–62

    CAS  PubMed  Google Scholar 

  • Murgia R, Piazzetta C, Cinco M (2002) Cystic forms of Borrelia burgdorferi sensu lato: induction, development, and the role of RpoS. Wien Klin Wochenschr 114(13–14):574–579

    CAS  PubMed  Google Scholar 

  • Nadelman RB, Nowakowski J, Forseter G, Bittker S, Cooper D, Goldberg N, McKenna D, Wormser GP (1993) Failure to isolate Borrelia burgdorferi after antimicrobial therapy in culture-documented Lyme borreliosis associated with erythema migrans: report of a prospective study. Am J Med 94(6):583–588

    CAS  PubMed  Google Scholar 

  • Norman MU, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G (2008) Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 4(10):e1000169

    PubMed  Google Scholar 

  • Nowalk AJ, Gilmore RD Jr, Carroll JA (2006) Serologic proteome analysis of Borrelia burgdorferi membrane-associated proteins. Infect Immun 74(7):3864–3873

    CAS  PubMed  Google Scholar 

  • Ohnishi J, Piesman J, de Silva AM (2001) Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci USA 98(2):670–675

    CAS  PubMed  Google Scholar 

  • Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D et al (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119(4):457–468

    CAS  PubMed  Google Scholar 

  • Parveen N, Leong JM (2000) Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35(5):1220–1234

    CAS  PubMed  Google Scholar 

  • Parveen N, Cornell KA, Bono JL, Chamberland C, Rosa P, Leong JM (2006) Bgp, a secreted glycosaminoglycan-binding protein of Borrelia burgdorferi strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice. Infect Immun 74(5):3016–3020

    CAS  PubMed  Google Scholar 

  • Perides G, Tanner-Brown LM, Eskildsen MA, Klempner MS (1999) Borrelia burgdorferi induces matrix metalloproteinases by neural cultures. J Neurosci Res 58(6):779–790

    CAS  PubMed  Google Scholar 

  • Peters DJ, Benach JL (1997) Borrelia burgdorferi adherence and injury to undifferentiated and differentiated neural cells in vitro. J Infect Dis 176(2):470–477

    CAS  PubMed  Google Scholar 

  • Phillips SE, Mattman LH, Hulinska D, Moayad H (1998) A proposal for the reliable culture of Borrelia burgdorferi from patients with chronic Lyme disease, even from those previously aggressively treated. Infection 26(6):364–367

    CAS  PubMed  Google Scholar 

  • Piesman J (1993) Dynamics of Borrelia burgdorferi transmission by nymphal Ixodes dammini ticks. J Infect Dis 167(5):1082–1085

    CAS  PubMed  Google Scholar 

  • Preac-Mursic V, Weber K, Pfister HW, Wilske B, Gross B, Baumann A, Prokop J (1989) Survival of Borrelia burgdorferi in antibiotically treated patients with Lyme borreliosis. Infection 17(6):355–359

    CAS  PubMed  Google Scholar 

  • Preac-Mursic V, Wilske B, Patsouris E, Jauris S, Will G, Soutschek E, Rainhardt S, Lehnert G, Klockmann U, Mehraein P (1992) Active immunization with pC protein of Borrelia burgdorferi protects gerbils against B. burgdorferi infection. Infection 20(6):342–349

    CAS  PubMed  Google Scholar 

  • Probert WS, Johnson BJ (1998) Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30(5):1003–1015

    CAS  PubMed  Google Scholar 

  • Roberts ED, Bohm RP Jr, Cogswell FB, Lanners HN, Lowrie RC Jr, Povinelli L, Piesman J, Philipp MT (1995) Chronic lyme disease in the rhesus monkey. Lab Invest 72(2):146–160

    CAS  PubMed  Google Scholar 

  • Rousselle JC, Callister SM, Schell RF, Lovrich SD, Jobe DA, Marks JA, Wieneke CA (1998) Borreliacidal antibody production against outer surface protein C of Borrelia burgdorferi. J Infect Dis 178(3):733–741

    CAS  PubMed  Google Scholar 

  • Rupprecht TA, Koedel U, Heimerl C, Fingerle V, Paul R, Wilske B, Pfister HW (2006) Adhesion of Borrelia garinii to neuronal cells is mediated by the interaction of OspA with proteoglycans. J Neuroimmunol 175(1–2):5–11

    CAS  PubMed  Google Scholar 

  • Sambri V, Basso F, Massaria F, Ardizzoni M, Cevenini R (1993) Adherence of Borrelia burgdorferi and Borrelia hermsii to mammalian cells in vitro. New Microbiol 16(1):43–49

    CAS  PubMed  Google Scholar 

  • Samuels DS, Radolf JD (eds.) (2010) Borrelia molecular biology, host interaction and pathogenesis. Caister Academic Press, Norwich, UK

    Google Scholar 

  • Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92(7):2909–2913

    CAS  PubMed  Google Scholar 

  • Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, Hook M, Skare JT (2006) Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 59(5):1591–1601

    CAS  PubMed  Google Scholar 

  • Shi Y, Xu Q, McShan K, Liang FT (2008) Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun 76(3):1239–1246

    CAS  PubMed  Google Scholar 

  • Shin OS, Isberg RR, Akira S, Uematsu S, Behera AK, Hu LT (2008) Distinct roles for MyD88 and Toll-like receptors 2, 5, and 9 in phagocytosis of Borrelia burgdorferi and cytokine induction. Infect Immun 76(6):2341–2351

    CAS  PubMed  Google Scholar 

  • Singh SK, Morbach H, Nanki T, Faber C, Baar V, Girschick HJ (2004) Differential expression of matrix metalloproteinases and cyclooxygenases in synovial cells exposed to Borrelia burgdorferi. Inflamm Res 53(12):689–696

    CAS  PubMed  Google Scholar 

  • Steere AC (2001) Lyme disease. N Engl J Med 345(2):115–125

    CAS  PubMed  Google Scholar 

  • Steere AC (2006) Lyme borreliosis in 2005, 30 years after initial observations in Lyme Connecticut. Wien Klin Wochenschr 118(21–22):625–633

    PubMed  Google Scholar 

  • Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113(8):1093–1101

    CAS  PubMed  Google Scholar 

  • Strle F, Maraspin V, Lotric-Furlan S, Ruzic-Sabljic E, Cimperman J (1996) Azithromycin and doxycycline for treatment of Borrelia culture-positive erythema migrans. Infection 24(1):64–68

    CAS  PubMed  Google Scholar 

  • Szczepanski A, Furie MB, Benach JL, Lane BP, Fleit HB (1990) Interaction between Borrelia burgdorferi and endothelium in vitro. J Clin Invest 85(5):1637–1647

    CAS  PubMed  Google Scholar 

  • Thomas DD, Comstock LE (1989) Interaction of Lyme disease spirochetes with cultured eucaryotic cells. Infect Immun 57(4):1324–1326

    CAS  PubMed  Google Scholar 

  • Thomas DD, Cadavid D, Barbour AG (1994) Differential association of Borrelia species with cultured neural cells. J Infect Dis 169(2):445–448

    CAS  PubMed  Google Scholar 

  • Tokarz R, Anderton JM, Katona LI, Benach JL (2004) Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect Immun 72(9):5419–5432

    CAS  PubMed  Google Scholar 

  • Verma A, Brissette CA, Bowman A, Stevenson B (2009) Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun 77(11):4940–4946

    CAS  PubMed  Google Scholar 

  • Weening EH, Parveen N, Trzeciakowski JP, Leong JM, Hook M, Skare JT (2008) Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun 76(12):5694–5705

    CAS  PubMed  Google Scholar 

  • Wormser GP (2006) Hematogenous dissemination in early Lyme disease. Wien Klin Wochenschr 118(21–22):634–637

    PubMed  Google Scholar 

  • Wormser GP, Schwartz I (2009) Antibiotic treatment of animals infected with Borrelia burgdorferi. Clin Microbiol Rev 22(3):387–395

    CAS  PubMed  Google Scholar 

  • Wormser GP, Nowakowski J, Nadelman RB, Bittker S, Cooper D, Pavia C (1998) Improving the yield of blood cultures for patients with early Lyme disease. J Clin Microbiol 36(1):296–298

    CAS  PubMed  Google Scholar 

  • Wormser GP, McKenna D, Carlin J, Nadelman RB, Cavaliere LF, Holmgren D, Byrne DW, Nowakowski J (2005) Brief communication: hematogenous dissemination in early Lyme disease. Ann Intern Med 142(9):751–755

    PubMed  Google Scholar 

  • Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, Krause PJ, Bakken JS, Strle F, Stanek G et al (2006) The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 43(9):1089–1134

    PubMed  Google Scholar 

  • Wu J, Weening EH, Faske JB, Hook M, Skare JT (2011) Invasion of eukaryotic cells by Borrelia burgdorferi requires {beta}1 integrins and Src kinase activity. Infect Immun 79(3):1338–1348

    CAS  PubMed  Google Scholar 

  • Yrjanainen H, Hytonen J, Song XY, Oksi J, Hartiala K, Viljanen MK (2007) Anti-tumor necrosis factor-alpha treatment activates Borrelia burgdorferi spirochetes 4 weeks after ceftriaxone treatment in C3H/He mice. J Infect Dis 195(10):1489–1496

    CAS  PubMed  Google Scholar 

  • Zambrano MC, Beklemisheva AA, Bryksin AV, Newman SA, Cabello FC (2004) Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect Immun 72(6):3138–3146

    CAS  PubMed  Google Scholar 

  • Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89(2):275–285

    CAS  PubMed  Google Scholar 

  • Zhao Z, Fleming R, McCloud B, Klempner MS (2007) CD14 mediates cross talk between mononuclear cells and fibroblasts for upregulation of matrix metalloproteinase 9 by Borrelia burgdorferi. Infect Immun 75(6):3062–3069

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Gilmore Jr. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gilmore, R.D. (2012). Immunoseclusion and Chronic Infection by Borrelia burgdorferi . In: Embers, M. (eds) The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5404-5_2

Download citation

Publish with us

Policies and ethics