Advertisement

MuRFs Specialized Members of the TRIM/RBCC Family with Roles in the Regulation of the Trophic State of Muscle and Its Metabolism

  • Olga Mayans
  • Siegfried Labeit
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 770)

Abstract

MuRFs, brief for muscle specific RING finger proteins, correspond to a subfamily of the TRIM/RBCC protein family. Here, we review recent progress on the structural biology of MuRF1, the MuRF family member being most clearly associated with muscle diseases. The emerging understanding of the structural biology of MuRFs and their interaction with their numerous myocellular proteins, at least in part representing ubiquitination targets for MuRFs, is likely to provide future rationales to modulate their activity, thus affecting their roles in muscle disease progression.

Keywords

Ubiquitin Ligase Ring Finger Coiled Coil Thick Filament Skeletal Muscle Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark KA, McElhinny AS, Beckerle MC et al. Striated muscle cytoarchitecture: an intricate web of form and fonction. Annu Rev Cell Dev Biol 2002; 18:637–706.CrossRefGoogle Scholar
  2. 2.
    Potthoff MJ, Olson EN, Bassel-Duby R. Skeletal muscle remodeling. Curr Opin Rheumatol 2007;19(6):542–9.CrossRefGoogle Scholar
  3. 3.
    Lecker SH, Jagoe RT, Gilbert A et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18(1):39–51.CrossRefGoogle Scholar
  4. 4.
    Pepato MT, Migliorini RH, Goldberg AL et al. Role of different proteolytic pathways in degradation of muscle protein from streptozotocin-diabetic rats. Am J Physiol 1996; 271(2 Pt 1):E340–E347.PubMedGoogle Scholar
  5. 5.
    Bodine SC, Latres E, Baumhueter S et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294(5547):1704–1708.CrossRefGoogle Scholar
  6. 6.
    Kedar V, McDonough H, Arya R et al. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA 2004; 101(52):18135–18140.CrossRefGoogle Scholar
  7. 7.
    Sandri M, Sandri C, Gilbert A et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004; 117(3):399–412.CrossRefGoogle Scholar
  8. 8.
    Adams V, Linke A, Wisloff U et al. Myocardial expression of Murf-1 and MAFbx after induction of chronic heart failure: Effect on myocardial contractility. Cardiovasc Res 2007; 73(1): 120–9.CrossRefGoogle Scholar
  9. 9.
    Chiang AP, Beck JS, Yen HJ et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Bied1 syndrome gene (BBS11). Proc Natl Acad Sci USA 2006; 103(16):6287–92.CrossRefGoogle Scholar
  10. 10.
    Saccone V, Palmieri M, Passamano L et al. Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H. Hum Mutat 2008; 29(2):240–7.CrossRefGoogle Scholar
  11. 11.
    Cossée M, Lagier-Tourenne C, Seguela C et al. Use of SNP array analysis to identify a novel TRIM32 mutation in limb-girdle muscular dystrophy type 2H. Neuromuscul Disord 2009; 19(4):255–60.CrossRefGoogle Scholar
  12. 12.
    Kudryashova E, Kudryashov D, Kramerova I et al. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J Mol Biol 2005; 354(2):413–24.CrossRefGoogle Scholar
  13. 13.
    Locke M, Tinsley CL, Benson MA et al. TRIM32 is an E3 ubiquitin ligase for dysbindin. Hum Mol Genet 2009; 18(13):2344–58.CrossRefGoogle Scholar
  14. 14.
    Schwamborn JC, Berezikov E, Knoblich JA. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 2009; 136(5):913–25.CrossRefGoogle Scholar
  15. 15.
    Mrosek M, Labeit D, Witt S et al. Molecular determinants forthe recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin. FASEB J 2007; 21(7): 1383–92.CrossRefGoogle Scholar
  16. 16.
    McElhinny AS, Kakinuma K, Sorimachi H et al. Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 2002; 157(1): 125–36.CrossRefGoogle Scholar
  17. 17.
    Witt CC, Witt SH, Lerche S et al. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J 2008; 27(2):350–360.CrossRefGoogle Scholar
  18. 18.
    Lange S, Xiang F, Yakovenko A et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005; 308(5728): 1599–1603.CrossRefGoogle Scholar
  19. 19.
    Fielitz J, Kim MS, Shelton JM et al. Requirement of protein kinase D1 for pathological cardiac remodeling. Proc Natl Acad Sci USA 2008; 105(8):3059–3063.CrossRefGoogle Scholar
  20. 20.
    Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37(10):1974–1984.CrossRefGoogle Scholar
  21. 21.
    Koyama S, Hata S, Witt CC et al. Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 2008; 376(5): 1224–36.CrossRefGoogle Scholar
  22. 22.
    Mrosek M, Meier S, Ucurum-Fotiadis Z et al. Structural analysis of B-Box 2 from MuRFl: identification of a novel self-association pattern in a RING-like fold. Biochemistry 2008; 47(40): 10722–30.CrossRefGoogle Scholar
  23. 23.
    Spencer JA, Eliazer S, Ilaria RL Jr et al. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol 2000; 150(4):771–84.CrossRefGoogle Scholar
  24. 24.
    Centner T, Yano J, Kimura E et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001; 306(4):717–726.CrossRefGoogle Scholar
  25. 25.
    Pizon V, Iakovenko A, Van Der Ven PF et al. Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 2002; 115(Pt 23):4469–82.CrossRefGoogle Scholar
  26. 26.
    Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of’ single protein RING finger’ E3 ubiquitin ligases. Bioessays 2005; 27(11): 1147–57.CrossRefGoogle Scholar
  27. 27.
    Peng H, Begg GE, Harper SL et al. Biochemical analysis ofthe Kruppel-associatedbox (KRAB) transcriptional repression domain. J Biol Chem 2000; 275(24): 18000–10.CrossRefGoogle Scholar
  28. 28.
    Short KM, Hopwood B, Yi Z et al. MID 1 and MID2 homo-and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol 2002; 3:1.CrossRefGoogle Scholar
  29. 29.
    Shoham N, Cohen L, Gazit A et al. The Tat protein of the caprine arthritis encephalitis virus interacts with the Notch2 EGF-like repeats and the epithelin/granulin precursor. Intervirology 2003; 46(4):239–44.CrossRefGoogle Scholar
  30. 30.
    Javanbakht H, Diaz-Griffero F, Stremlau M et al. The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem 2005; 280(29):26933–40.CrossRefGoogle Scholar
  31. 31.
    Cao T, Borden KL, Freemont PS et al. Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci 1997; 110(Pt 14):1563–71.PubMedGoogle Scholar
  32. 32.
    Reymond A, Meroni G, Fantozzi A et al. The tripartite motif family identifies cell compartments. EMBO J 2001;20(9):2140–51.CrossRefGoogle Scholar
  33. 33.
    Cao T, Duprez E, Borden KL et al. Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J Cell Sci 1998; 111(Pt 10): 1319–29.PubMedGoogle Scholar
  34. 34.
    McElhinny AS, Kazmierski ST, Labeit S et al. Nebulin: the nebulous, multifunctional giant of striated muscle. Trends Cardiovasc Med 2003; 13(5): 195–201.CrossRefGoogle Scholar
  35. 35.
    Witt SH, Granzier H, Witt CC et al. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 2005; 350(4):713–22.CrossRefGoogle Scholar
  36. 36.
    Nikawa T, Ishidoh K, Hirasaka K et al. Skeletal muscle gene expression in space-flown rats. FASEB J 2004; 18(3):522–524.CrossRefGoogle Scholar
  37. 37.
    Adams V, Mangner N, Gasch A et al. Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice. J Mol Biol 2008; 384(1):48–59.CrossRefGoogle Scholar
  38. 38.
    Glass DJ. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 2003; 5(2):87–90.CrossRefGoogle Scholar
  39. 39.
    Cohen S, Brault JJ, Gygi SP et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF 1-dependent ubiquitylation. J Cell Biol 2009; 185(6): 1083–95.CrossRefGoogle Scholar
  40. 40.
    Mearini G, Schlossarek S, Willis MS et al. The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 2008; 1782(12):749–763.CrossRefGoogle Scholar
  41. 41.
    Hirner S, Krohne C, Schuster A et al. MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies. J Mol Biol 2008; 379(4):666–677.CrossRefGoogle Scholar
  42. 42.
    Sorimachi H, Kinbara K, Kimura S et al. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 1995; 270(52):31158–62.CrossRefGoogle Scholar
  43. 43.
    Fielitz J, Kim MS, Shelton JM et al. Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 2007; 117(9):2486–95.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Olga Mayans
    • 1
  • Siegfried Labeit
    • 2
  1. 1.School of Biological SciencesUniversity of LiverpoolLiverpoolUK
  2. 2.Universitätsmedizin MannheimUniversity of HeidelbergMannheimGermany

Personalised recommendations