TRIM Proteins in Cancer

  • Valeria Cambiaghi
  • Virginia Giuliani
  • Sara Lombardi
  • Cristiano Marinelli
  • Francesca Toffalorio
  • Pier Giuseppe Pelicci
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Some members of the tripartite motif (TRIM/RBCC) protein family are thought to be important regulators of carcinogenesis. This is not surprising as the TRIM proteins are involved in several biological processes, such as cell growth, development and cellular differentiation and alteration of these proteins can affect transcriptional regulation, cell proliferation and apoptosis. In particular, four TRIM family genes are frequently translocated to other genes, generating fusion proteins implicated in cancer initiation and progression. Among these the most famous is the promy elocytic leukaemia gene PML, which encodes the protein TRIM19. PML is involved in the t(15;17) translocation that specifically occurs in Acute Promyelocytic Leukaemia (APL), resulting in a PML-retinoic acid receptor-a (PML-RARα) fusion protein.

Other members of the TRIM family are linked to cancer development without being involved in chromosomal re-arrangements, possibly through ubiquitination or loss of tumour suppression functions.

This chapter discusses the biological functions of TRIM proteins in cancer.

Keywords

Lymphoma Leukemia Serine Lysine Oligomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goddard AD, Borrow J, Freemont PS et al. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 1991; 254:1371–4.PubMedCrossRefGoogle Scholar
  2. 2.
    de Thé H, Lavau C, Marchio A et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66:675–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhong S, Delva L, Rachez C et al. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 1999; 23:287–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93:3167–215.PubMedGoogle Scholar
  5. 5.
    Grignani F, De Matteis S, Nervi C et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391:815–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsimberidou AM, Tirado-Gomez M, Andreeff M et al.; Anderson Cancer Center Series. Single-agent liposomal all-trans retinoic acid can cure some patients with untreated acute promyelocytic leukemia: an update of The University of Texas M. D. Anderson Cancer Center Series. Leuk Lymphoma 2006; 47:1062–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang XW, Yan XJ, Zhou ZR et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010; 328:240–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Lallemand-Breitenbach V, Zhu J, Chen Z et al. Curing APL through PML/RARA degradation by As2O3. Trends Mol Med 2012; 18:36–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Pandolfi PP. In vivo analysis of the molecular genetics of acute promyelocytic leukemia. Oncogene 2001; 20:5726–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Reymond A, Meroni G, Fantozzi A et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20:2140–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Borden KL, Boddy MN, Lally J et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 1995; 14:1532–41.PubMedGoogle Scholar
  12. 12.
    Fagioli M, Alcalay M, Tomassoni L et al. Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 1998; 16:2905–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Fagioli M, Alcalay M, Pandolfi PP et al. Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 1992; 7:1083–91.PubMedGoogle Scholar
  14. 14.
    Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001; 20:7223–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Koken MH, Puvion-Dutilleul F, Guillemin MC et al. The t(15; 17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994; 13:1073–83.PubMedGoogle Scholar
  16. 16.
    Weis K, Rambaud S, Lavau C et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76:345–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Dyck JA, Maul GG, Miller WH Jr. et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994; 76:333–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Ishov AM, Sotnikov AG, Negorev D et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 1999; 147:221–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhong S, Hu P, Ye TZ et al. A role for PML and the nuclear body in genomic stability. Oncogene 1999; 18:7941–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-beta signalling. Nature 2004; 431:205–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Giorgi C, Ito K, Lin HK et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 2010; 330:1247–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Yeager TR, Neumann AA, Englezou A et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 1999; 59:4175–9.PubMedGoogle Scholar
  23. 23.
    Wang ZG, Delva L, Gaboli M et al. Role of PML in cell growth and the retinoic acid pathway. Science 1998; 279:1547–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Mu ZM, Chin KV, Liu JH et al. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 1994; 14:6858–67.PubMedGoogle Scholar
  25. 25.
    Wang ZG, Ruggero D, Ronchetti S et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998; 20:266–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Guo A, Salomoni P, Luo J et al. The function of PMLinp53-dependent apoptosis. Nat Cell Biol 2000; 2:730–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Yang S, Kuo C, Bisi JE, Kim MK. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCdsl/Chk2. Nat Cell Biol 2002; 4:865–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Hofmann TG, Möller A, Sirma H et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002; 4:1–10.PubMedCrossRefGoogle Scholar
  29. 29.
    D’Orazi G, Cecchinelli B, Bruno T et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002; 4:11–9.CrossRefGoogle Scholar
  30. 30.
    Oda K, Arakawa H, Tanaka T et al. p53AIPl, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000; 102:849–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Lain S, Midgley C, Sparks A et al. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp Cell Res 1999; 248:457–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Wei X, Yu ZK, Ramalingam A et al. Physical and functional interactions between PML and MDM2. J Biol Chem 2003; 278:29288–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Louria-Hayon I, Grossman T, Sionov RV et al. The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 2003; 278:33134–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Kurki S, Latonen L, Laiho M. Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 2003; 116:3917–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 2003; 22:9048–57.PubMedCrossRefGoogle Scholar
  36. 36.
    Carracedo A, Ito K, Pandolfi PP. The nuclear bodies inside out: PML conquers the cytoplasm. Curr Opin Cell Biol 2011; 23:360–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Pearson M, Carbone R, Sebastiani C et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406:207–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Langley E, Pearson M, Faretta M et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002; 21:2383–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Le Douarin B, Pierrat B, vom Baur E et al. A new version of the two-hybrid assay for detection of protein-protein interactions. Nucleic Acids Res 1995; 23:876–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Gandini D, De Angeli C, Aguiari G et al. Preferential expression of the transcription coactivator HTIF1 alpha gene in acute myeloid leukemia and MDS-related AML. Leukemia 2002; 16:886–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Khetchoumian K, Teletin M, Tisserand J et al. Loss of Trim24 (Tif1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat Genet 2007; 39:1500–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Aasland R, Gibson TJ, Stewart AF. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 1995; 20:56–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Koken MH, Saïb A, de Thé H. A C4HC3 zinc finger motif. C R Acad Sci III 1995; 318:733–9.PubMedGoogle Scholar
  44. 44.
    Jeanmougin F, Wurtz JM, Le Douarin B et al. The bromodomain revisited. Trends Biochem Sci 1997; 22:151–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Le Douarin B, vom Baur E, Zechel C et al. Ligand-dependent interaction of nuclear receptors with potential transcriptional intermediary factors (mediators). Philos Trans R Soc Lond B Biol Sci 1996; 351:569–78.PubMedCrossRefGoogle Scholar
  46. 46.
    Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of’ single protein RING finger’ E3 ubiquitin ligases. Bioessays 2005; 27:1147–57.PubMedCrossRefGoogle Scholar
  47. 47.
    Tsai WW, Wang Z, Yiu TT et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 2010; 468:927–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Tisserand J, Khetchoumian K, Thibault C et al. Tripartite motif 24 (Trim24/Tiflα) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor a (Rarα) inhibition. J Biol Chem 2011; 286:33369–79.PubMedCrossRefGoogle Scholar
  49. 49.
    Miki T, Fleming TP, Crescenzi M et al. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. Proc Natl Acad Sci USA 1991; 88:5167–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999; 18:4388–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Venturini L, You J, Stadler M et al. TIF lgamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene 1999; 18:1209–17.PubMedCrossRefGoogle Scholar
  52. 52.
    He W, Dorn DC, Erdjument-Bromage H et al. Hematopoiesis controlled by distinct TIF lgamma and Smad4 branches of the TGFbeta pathway. Cell 2006; 125:929–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Aucagne R, Droin N, Paggetti J et al. Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Invest 2011; 121:2361–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Henry J, Ribouchon MT, Offer C et al. B30.2-like domain proteins: a growing family. Biochem Biophys Res Commun 1997; 235:162–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Takahashi M, Inaguma Y, Hiai H et al. Developmentally regulated expression of a human “finger”-containing gene encoded by the 5′ half of the ret transforming gene. Mol Cell Biol 1988; 8:1853–6.PubMedGoogle Scholar
  56. 56.
    Takahashi M, Ritz J, Cooper GM. Activation of anovelhuman transforming gene, ret, by DNA rearrangement. Cell 1985; 42:581–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Takahashi M, Cooper GM. ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 1987; 7:1378–85.PubMedGoogle Scholar
  58. 58.
    Cao T, Duprez E, Borden KL et al. Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J Cell Sci 1998; 111:1319–29.PubMedGoogle Scholar
  59. 59.
    Shimono Y, Murakami H, Hasegawa Y et al. RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. J Biol Chem 2000; 275:39411–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Shimono Y, Murakami H, Kawai K et al. Mi-2 beta associates with BRG1 and RET finger protein at the distinct regions with transcriptional activating and repressing abilities. J Biol Chem 2003; 278:51638–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Bloor AJ, Kotsopoulou E, Hayward P et al. RFP represses transcriptional activation by bHLH transcription factors. Oncogene 2005; 24:6729–36.PubMedCrossRefGoogle Scholar
  62. 62.
    Fukushige S, Kondo E, Gu Z et al. RET fingerprotein enhances MBD2-and MBD4-dependent transcriptional repression. Biochem Biophys Res Commun 2006; 351:85–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Krützfeldt M, Ellis M, Weekes DB et al. Selective ablation of retinoblastoma protein function by the RET finger protein. Mol Cell 2005; 18:213–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Miyake S, Sellers WR, Safran M et al. Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol Cell Biol 2000; 20:8889–902.PubMedCrossRefGoogle Scholar
  65. 65.
    Tezel GG, Uner A, Yildiz I et al. RET finger protein expression in invasive breast carcinoma: relationship between RFP and ErbB2 expression. Pathol Res Pract 2009; 205:403–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Chu Y, Yang X. SUMO E3 ligase activity of TRIM proteins. Oncogene 2011; 30:1108–16.PubMedCrossRefGoogle Scholar
  67. 67.
    Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2002; 2:101–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 1998; 351:1451–67.CrossRefGoogle Scholar
  69. 69.
    Ikeda K, Orimo A, Higashi Y et al. Efp as a primary estrogen-responsive gene in human breast cancer. FEBS Lett 2000; 472:9–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Urano T, Saito T, Tsukui T et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 2002; 417:871–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Suzuki T, Urano T, Tsukui T et al. Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clin Cancer Res 2005; 11:6148–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Nakajima A, Maruyama S, Bohgaki M et al. Ligand-dependent transcription of estrogen receptor alpha is mediated by the ubiquitin ligase EFP. Biochem Biophys Res Commun 2007; 357:245–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Ueyama K, Ikeda K, Sato W et al. Knockdown of Efp by DNA-modified small interfering RNA inhibits breast cancer cell proliferation and in vivo tumor growth. Cancer Gene Ther 2010; 17:624–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Frank DJ, Roth MB. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J Cell Biol 1998; 140:1321–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Fridell RA, Harding LS, Bogerd HP et al. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology 1995; 209:347–57.PubMedCrossRefGoogle Scholar
  76. 76.
    Slack FJ, Ruvkun G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem Sci 1998; 23:474–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Horn EJ, Albor A, Liu Y et al. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 2004; 25:157–67.PubMedCrossRefGoogle Scholar
  78. 78.
    Frosk P, Weiler T, Nylen E et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet 2002; 70:663–72.PubMedCrossRefGoogle Scholar
  79. 79.
    Chiang AP, Beck JS, Yen HJ et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS 11). Proc Natl Acad Sci U S A 2006; 103:6287–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Kudryashova E, Wu J, Havton LA et al. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet 2009; 18:1353–67.PubMedCrossRefGoogle Scholar
  81. 81.
    Kulesz-Martin MF, Penetrante R, East CJ. Benign and malignant tumor stages in a mouse keratinocyte line treated with 7, 12-dimethylbenz[a]anthracene in vitro. Carcinogenesis 1988; 9:171–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Albor A, El-Hizawi S, Horn EJ et al. The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB. J Biol Chem 2006; 281:25850–66.PubMedCrossRefGoogle Scholar
  83. 83.
    Ryu YS, Lee Y, Lee KW et al. TRIM32 protein sensitizes cells to tumor necrosis factor (TNFα)-induced apoptosis via its RING domain-dependent E3 ligase activity against X-linked inhibitor of apoptosis (XIAP). J Biol Chem 2011; 286:25729–38.PubMedCrossRefGoogle Scholar
  84. 84.
    Sato T, Okumura F, Kano S et al. TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription. J Cell Sci 2011; 124:3492–502.PubMedCrossRefGoogle Scholar
  85. 85.
    Vincent SR, Kwasnicka DA, Fretier P. A novel RING finger-B box-coiled-coil protein, GERP. Biochem Biophys Res Commun 2000; 279:482–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Carinci F, Arcelli D, Lo Muzio L et al. Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma. Transi Res 2007; 150:233–45.CrossRefGoogle Scholar
  87. 87.
    Toniato E, Chen XP, Losman J et al. TRIM8/GERP RING finger protein interacts with SOCS-1. J Biol Chem 2002; 277:37315–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Okumura F, Matsunaga Y, Katayama Y et al. TRIM8 modulates STAT3 activity through negative regulation of PIAS3. JCell Sci 2010; 123:2238–45.CrossRefGoogle Scholar
  89. 89.
    Okumura F, Okumura AJ, Matsumoto M et al. TRIM8 regulates Nanog via Hsp90β-mediated nuclear translocation of STAT3 in embryonic stem cells. Biochim Biophys Acta 2011; 1813:1784–92.PubMedCrossRefGoogle Scholar
  90. 90.
    Caratozzolo MF, Micale L, Turturo MG et al. TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle 2012; 11:511–23.PubMedCrossRefGoogle Scholar
  91. 91.
    Allton K, Jain AK, Herz HM et al. Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci U S A 2009; 106:11612–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Jain AK, Barton MC. Regulation of p53: TRIM24 enters the RING. Cell Cycle 2009; 8:3668–74.PubMedCrossRefGoogle Scholar
  93. 93.
    Alsheich-Bartok O, Haupt S, Alkalay-Snir I et al. PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene 2008; 27:3653–61.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang C, Ivanov A, Chen L et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 2005; 24:3279–90.PubMedCrossRefGoogle Scholar
  95. 95.
    Yang B, O’Herrin SM, Wu J et al. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 2007; 67:9954–62.PubMedCrossRefGoogle Scholar
  96. 96.
    Yuan Z, Villagra A, Peng L et al. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. Mol Cell Biol 2010; 30:3004–15.PubMedCrossRefGoogle Scholar
  97. 97.
    Yuan Z, Peng L, Radhakrishnan R et al. Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J Biol Chem 2010; 285:39329–38.PubMedCrossRefGoogle Scholar
  98. 98.
    Sho T, Tsukiyama T, Sato T et al. TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim Biophys Acta 2011; 1813:1245–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Joo HM, Kim JY, Jeong JB et al. Ret finger protein 2 enhances ionizing radiation-induced apoptosis via degradation of AKT and MDM2. Eur J Cell Biol 2011; 90:420–31.PubMedCrossRefGoogle Scholar
  100. 100.
    Obad S, Brunnström H, Vallon-Christersson J et al. Staf50 is a novel p53 target gene conferring reduced clonogenic growth of leukemic U-937 cells. Oncogene 2004; 23:4050–9.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Valeria Cambiaghi
    • 1
  • Virginia Giuliani
    • 1
  • Sara Lombardi
    • 1
  • Cristiano Marinelli
    • 1
  • Francesca Toffalorio
    • 1
  • Pier Giuseppe Pelicci
    • 1
    • 2
  1. 1.Department of Experimental OncologyEuropean Institute of Oncology, IEOMilanItaly
  2. 2.Dipartimento di Medicina, Chirurgia e OdontoiatriaUniversity of MilanoMilanItaly

Personalised recommendations