PML Nuclear Bodies and Other Trim-Defined Subcellular Compartments

  • Elizabeth C. Batty
  • Kirsten Jensen
  • Paul S. Freemont
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 770)


Tripartite motif (TRIM) proteins are defined by their possession of a RING, B-box and predicted coiled coil (RBCC) domain. The coiled-coil region facilitates the oligomerisation of TRIMs and contributes to the formation of high molecular weight complexes that show interesting subcellular compartmentalisations and structures. TRIM protein compartments include both nuclear and cytoplasmic filaments and aggregates (bodies), as well as diffuse subcellular distributions. TRIM19, otherwise known as promyelocytic leukaemia (PML) protein forms nuclear aggregates termed PML nuclear bodies (PML NBs), at which a number of functionally diverse proteins transiently or covalently associate. PML NBs are therefore implicated in a wide variety of cellular functions such as transcriptional regulation, viral response, apoptosis and nuclear protein storage.


Acute Promyelocytic Leukaemia Nuclear Body Trim Protein Tripartite Motif Nuclear Export Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reddy BA, Etkin LD, Freemont PS. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 1992; 17(9):344–345.PubMedCrossRefGoogle Scholar
  2. 2.
    Reymond A, Meroni G, Fantozzi A et al. The tripartite motif family identifies cell compartments. EMBO J 2001;20(9):2140–2151.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of’ single protein RING finger’ E3 ubiquitin ligases. Bioessays 2005; 27(11):1147–1157.PubMedCrossRefGoogle Scholar
  4. 4.
    Dellaire G, Ching RW, Dehghani H et al. The number of PML nuclear bodies increases in early S phase by a fission mechanism. J Cell Sci 2006; 119(Pt 6): 1026–1033.PubMedCrossRefGoogle Scholar
  5. 5.
    Ishov AM, Sotnikov AG, Negorev D et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 1999; 147(2):221–234.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhong S, Muller S, Ronchetti S et al. Role of SUMO-1-modified PML in nuclear body formation. Blood 2000; 95(9):2748–2752.PubMedGoogle Scholar
  7. 7.
    Szostecki C, Guldner HH, Netter HJ et al. Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J Immunol 1990; 145(12):4338–4347.PubMedGoogle Scholar
  8. 8.
    Boisvert FM, Kruhlak MJ, Box AK et al. The transcription coactivator CBP is a dynamic component of the promyelocytic leukemia nuclear body. J Cell Biol 2001; 152(5): 1099–1106.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Li H, Leo C, Zhu J et al. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 2000; 20(5):1784–1796.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Alcalay M, Tomassoni L, Colombo E et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol 1998; 18(2):1084–1093.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Boddy MN, Duprez E, Borden KL et al. Surface residue mutations of the PML RING finger domain alter the formation of nuclear matrix-associated PML bodies. J Cell Sci 1997; 110(Pt 18):2197–2205.PubMedGoogle Scholar
  12. 12.
    Negorev D, Maul GG. Cellular proteins localized at and interacting within ND10/PML nuclear bodies/ PODs suggest functions of a nuclear depot. Oncogene 2001; 20(49):7234–7242.PubMedCrossRefGoogle Scholar
  13. 13.
    Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell 2002; 108(2): 165–170.CrossRefPubMedGoogle Scholar
  14. 14.
    Takahashi Y, Lallemand-Breitenbach V, Zhu J et al. PML nuclear bodies and apoptosis. Oncogene 2004; 23(16):2819–2824.PubMedCrossRefGoogle Scholar
  15. 15.
    Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 2004; 26(9):963–977.PubMedCrossRefGoogle Scholar
  16. 16.
    Fabunmi RP, Wigley WC, Thomas PJ et al. Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J Cell Sci 2001; 114(Pt 1):29–36.PubMedGoogle Scholar
  17. 17.
    Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000; 2(5):E85–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Strudwick S, Borden KL. Finding a role for PML in APL pathogenesis: a critical assessment of potential PML activities. Leukemia 2002; 16(10):1906–1917.PubMedCrossRefGoogle Scholar
  19. 19.
    Sanchez-Pulido L, Valencia A, Rojas AM. Are promyelocytic leukaemia protein nuclear bodies a scaffold for caspase-2 programmed cell death? Trends Biochem Sci 2007; 32(9):400–406.PubMedCrossRefGoogle Scholar
  20. 20.
    Everett RD, Chelbi-Alix MK. PML and PML nuclear bodies: implications in antiviral defence. Biochimie 2007;89(6–7):819–830.CrossRefPubMedGoogle Scholar
  21. 21.
    Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005; 3(10):799–808.PubMedCrossRefGoogle Scholar
  22. 22.
    Freemont PS. The RING finger. A novel protein sequence motif related to the zinc finger. Ann NY Acad Sci 1993; 684: 174–192.CrossRefPubMedGoogle Scholar
  23. 23.
    Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell 2000; 102(5):549–552.PubMedCrossRefGoogle Scholar
  24. 24.
    Borden KL, Boddy MN, Lally J et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 1995; 14(7):1532–1541.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mu ZM, Chin KV, Liu JH et al. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 1994; 14(10):6858–6867.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Le XF, Yang P, Chang KS. Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem 1996; 271(1): 130–135.PubMedCrossRefGoogle Scholar
  27. 27.
    Borden KL, Campbell Dwyer EJ, Salvato MS. The promyelocytic leukemia protein PML has apro-apoptotic activity mediated through its RING domain. FEBS Lett 1997; 418(1–2):30–34.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Regad T, Chelbi-Alix MK. Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001; 20(49):7274–7286.PubMedCrossRefGoogle Scholar
  29. 29.
    Kentsis A, Gordon RE, Borden KL. Control of biochemical reactions through supramolecular RING domain self-assembly. Proc Natl Acad Sci USA 2002; 99(24):15404–15409.PubMedCrossRefGoogle Scholar
  30. 30.
    Borden KL. RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem Cell Biol 1998; 76(2–3):351–358.PubMedCrossRefGoogle Scholar
  31. 31.
    Borden KL, Lally JM, Martin SR et al. In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci USA 1996; 93(4):1601–1606.PubMedCrossRefGoogle Scholar
  32. 32.
    Fagioli M, Alcalay M, Tomassoni L et al. Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 1998; 16(22):2905–2913.PubMedCrossRefGoogle Scholar
  33. 33.
    Lallemand-Breitenbach V, Zhu J, Puvion F et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 1 1S proteasome recruitment and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 2001; 193(12):1361–1371.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhu J, Zhou J, Peres L et al. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 2005; 7(2): 143–153.PubMedCrossRefGoogle Scholar
  35. 35.
    Massiah MA, Simmons BN, Short KM et al. Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING. J Mol Biol 2006; 358(2):532–545.PubMedCrossRefGoogle Scholar
  36. 36.
    Grignani F, Testa U, Rogaia D et al. Effects on differentiation by the promyelocytic leukemia PML/ RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J 1996; 15(18):4949–4958.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kastner P, Perez A, Lutz Y et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with anew family of oncoproteins. EMBO J 1992; 11(2):629–642.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Perez A, Kastner P, Sethi S et al. PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J 1993; 12(8):3171–3182.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fanelli M, Fantozzi A, De Luca P et al. The coiled-coil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome. J Biol Chem 2004; 279(7):5374–5379.PubMedCrossRefGoogle Scholar
  40. 40.
    Muller S, Matunis MJ, Dejean A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 1998; 17(1):61–70.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001; 20(49):7223–7233.CrossRefPubMedGoogle Scholar
  42. 42.
    Tatham MH, Jaffray E, Vaughan OA et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276(38):35368–35374.PubMedCrossRefGoogle Scholar
  43. 43.
    Fu C, Ahmed K, Ding H et al. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 2005; 24(35):5401–5413.PubMedCrossRefGoogle Scholar
  44. 44.
    Kamitani T, Kito K, Nguyen HP et al. Identification of three major sentrinization sites in PML. J Biol Chem 1998; 273(41):26675–26682.PubMedCrossRefGoogle Scholar
  45. 45.
    Duprez E, Saurin AJ, Desterro JM et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 1999; 112(Pt 3):381–393.PubMedGoogle Scholar
  46. 46.
    La Morte VJ, Dyck JA, Ochs RL et al. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc Natl Acad Sci USA 1998; 95(9):4991–4996.CrossRefGoogle Scholar
  47. 47.
    Desterro JM, Rodriguez MS, Kemp GD et al. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 1999; 274(15):10618–10624.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shen TH, Lin HK, Scaglioni PP et al. The mechanisms of PML-nuclear body formation. Mol Cell 2006; 24(3):331–339.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Matunis MJ, Zhang XD, Ellis NA. SUMO: the glue that binds. Dev Cell 2006; 11(5):596–597.PubMedCrossRefGoogle Scholar
  50. 50.
    Prudden J, Pebernard S, Raffa G et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 2007; 26(18):4089–4101.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sun H, Leverson JD, Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 2007; 26(18):4102–4112.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Koken MH, Linares-Cruz G, Quignon F et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 1995; 10(7):1315–1324.PubMedGoogle Scholar
  53. 53.
    Muratani M, Gerlich D, Janicki SM et al. Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat Cell Biol 2002; 4(2): 106–110.PubMedCrossRefGoogle Scholar
  54. 54.
    Eskiw CH, Dellaire G, Mymryk JS et al. Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. J Cell Sci 2003; 116(Pt21):4455–4466.PubMedCrossRefGoogle Scholar
  55. 55.
    Everett RD, Lomonte P, Sternsdorf T et al. Cell cycle regulation of PMLmodification and ND10 composition. J Cell Sci 1999; 112(Pt 24):4581–4588.PubMedGoogle Scholar
  56. 56.
    Dellaire G, Eskiw CH, Dehghani H et al. Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. J Cell Sci 2006; 119(Pt 6): 1034–1042.PubMedCrossRefGoogle Scholar
  57. 57.
    Luciani JJ, Depetris D, Usson Y et al. PML nuclear bodies are highly organised DNA-protein structures with a function in heterochromatin remodelling at the G2 phase. J Cell Sci 2006; 119(Pt 12):2518–2531.PubMedCrossRefGoogle Scholar
  58. 58.
    Condemine W, Takahashi Y, Le Bras M et al. A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J Cell Sci 2007; 120(Pt 18):3219–3227.PubMedCrossRefGoogle Scholar
  59. 59.
    Fagioli M, Alcalay M, Pandolfi PP et al. Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 1992; 7(6):1083–1091.PubMedGoogle Scholar
  60. 60.
    Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-beta signalling. Nature 2004; 431(7005):205–211.CrossRefPubMedGoogle Scholar
  61. 61.
    Salomoni P, Bellodi C. New insights into the cytoplasmic function of PML. Histol Histopathol 2007; 22(8):937–946.PubMedGoogle Scholar
  62. 62.
    Henderson BR, Eleftheriou A. A comparison of the activity, sequence specificity and CRM1-dependence of different nuclear export signals. Exp Cell Res 2000; 256(1):213–224.PubMedCrossRefGoogle Scholar
  63. 63.
    Condemine W, Takahashi Y, Zhu J et al. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 2006; 66(12):6192–6198.PubMedCrossRefGoogle Scholar
  64. 64.
    Xu ZX, Zou WX, Lin P et al. A role for PML3 in centrosome duplication and genome stability. Mol Cell 2005; 17(5):721–732.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang ZG, Ruggero D, Ronchetti S et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998; 20(3):266–272.PubMedCrossRefGoogle Scholar
  66. 66.
    Hofmann TG, Will H. Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ 2003; 10(12):1290–1299.PubMedCrossRefGoogle Scholar
  67. 67.
    Fogal V, Gostissa M, Sandy P et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 2000; 19(22):6185–6195.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Guo A, Salomoni P, Luo J et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000; 2(10):730–736.PubMedCrossRefGoogle Scholar
  69. 69.
    de The H, Lavau C, Marchio A et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes afunctionally altered RAR. Cell 1991; 66(4):675–684.PubMedCrossRefGoogle Scholar
  70. 70.
    Kakizuka A, Miller WH Jr, Umesono K et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66(4):663–674.PubMedCrossRefGoogle Scholar
  71. 71.
    Pandolfi PP, Grignani F, Alcalay M et al. Structure and origin of the acute promyelocytic leukemia myl/ RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 1991;6(7):1285–1292.PubMedGoogle Scholar
  72. 72.
    Goddard AD, Borrow J, Freemont PS et al. Characterization of a zinc finger gene disrupted by the t(15; 17) in acute promyelocytic leukemia. Science 1991; 254(5036):1371–1374.PubMedCrossRefGoogle Scholar
  73. 73.
    Dyck JA, Maul GG, Miller WH Jr et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994; 76(2):333–343.PubMedCrossRefGoogle Scholar
  74. 74.
    Koken MH, Puvion-Dutilleul F, Guillemin MC et al. The t(15; 17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994; 13(5):1073–1083.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Weis K, Rambaud S, Lavau C et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76(2):345–356.PubMedCrossRefGoogle Scholar
  76. 76.
    Daniel MT, Koken M, Romagne O et al. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 1993; 82(6): 1858–1867.PubMedGoogle Scholar
  77. 77.
    Huang ME, Ye YC, Chen SR et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72(2):567–572.PubMedGoogle Scholar
  78. 78.
    Dong S, Stenoien DL, Qiu J et al. Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor alpha. Mol Cell Biol 2004; 24(10):4465–4475.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Huang Y, Qiu J, Chen G et al. Coiled-coil domain of PML is essential for the aberrant dynamics of PML-RARalpha, resulting in sequestration and decreased mobility of SMRT. Biochem Biophys Res Commun 2008; 365(2):258–265.PubMedCrossRefGoogle Scholar
  80. 80.
    Everett RD. Interactions between DNA viruses, ND10 and the DNA damage response. Cell Microbiol 2006; 8(3):365–374.PubMedCrossRefGoogle Scholar
  81. 81.
    Ishov AM, Maul GG. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 1996; 134(4):815–826.PubMedCrossRefGoogle Scholar
  82. 82.
    Maul GG, Ishov AM, Everett RD. Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology 1996; 217(1):67–75.PubMedCrossRefGoogle Scholar
  83. 83.
    Chelbi-Alix MK, Pelicano L, Quignon F et al. Induction of the PML protein by interferons in normal and APL cells. Leukemia 1995; 9(12):2027–2033.PubMedGoogle Scholar
  84. 84.
    Lavau C, Marchio A, Fagioli M et al. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 1995; 11(5):871–876.PubMedGoogle Scholar
  85. 85.
    Chelbi-Alix MK, Quignon F, Pelicano L et al. Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J Virol 1998; 72(2): 1043–1051.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Carvalho T, Seeler JS, Ohman K et al. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 1995; 131(1):45–56.PubMedCrossRefGoogle Scholar
  87. 87.
    Doucas V, Ishov AM, Romo A et al. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 1996; 10(2): 196–207.PubMedCrossRefGoogle Scholar
  88. 88.
    Hoppe A, Beech SJ, Dimmock J et al. Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 2006; 80(6):3042–3049.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Stremlau M, Owens CM, Perron MJ et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427(6977):848–853.CrossRefPubMedGoogle Scholar
  90. 90.
    Perez-Caballero D, Hatziioannou T, Yang A et al. Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 2005; 79(14):8969–8978.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Campbell EM, Dodding MP, Yap MW et al. TRIM5 alpha cytoplasmic bodies are highly dynamic structures. Mol Biol Cell 2007; 18(6):2102–2111.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bernardi R, Scaglioni PP, Bergmann S et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 2004; 6(7):665–672.PubMedCrossRefGoogle Scholar
  93. 93.
    Janderova-Rossmeislova L, Novakova Z, Vlasakova J et al. PML protein association with specific nucleolar structures differs in normal, tumor and senescent human cells. J Struct Biol 2007; 159(1):56–70.PubMedCrossRefGoogle Scholar
  94. 94.
    Kiesslich A, von Mikecz A, Hemmerich P. Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J Struct Biol 2002; 140(1–3):167–179.PubMedCrossRefGoogle Scholar
  95. 95.
    Everett RD, Earnshaw WC, Pluta AF et al. A dynamic connection between centromeres and ND10 proteins. J Cell Sci 1999; 112(Pt 20):3443–3454.PubMedGoogle Scholar
  96. 96.
    Bryan TM, Englezou A, Dalla-Pozza L et al. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 1997; 3(11): 1271–1274.PubMedCrossRefGoogle Scholar
  97. 97.
    Dunham MA, Neumann AA, Fasching CL et al. Telomere maintenance by recombination in human cells. Nat Genet 2000; 26(4):447–450.PubMedCrossRefGoogle Scholar
  98. 98.
    Yeager TR, Neumann AA, Englezou A et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 1999; 59(17):4175–4179.PubMedGoogle Scholar
  99. 99.
    Shiels C, Islam SA, Vatcheva R et al. PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J Cell Sci 2001; 114(Pt 20):3705–3716.PubMedGoogle Scholar
  100. 100.
    Wang J, Shiels C, Sasieni P et al. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 2004; 164(4):515–526.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hasegawa N, Iwashita T, Asai N et al. A RING finger motif regulates transforming activity of the rfp/ret fusion gene. Biochem Biophys Res Commun 1996; 225(2):627–631.PubMedCrossRefGoogle Scholar
  102. 102.
    Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and arelated protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999; 18(30):4388–4393.PubMedCrossRefGoogle Scholar
  103. 103.
    Le Douarin B, Zechel C, Garnier JM et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995; 14(9):2020–2033.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhong S, Delva L, Rachez C et al. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 1999; 23(3):287–295.PubMedCrossRefGoogle Scholar
  105. 105.
    Seeler JS, Marchio A, Losson R et al. Common properties of nuclear body protein SP100 and TIF1 alpha chromatin factor: role of SUMO modification. Mol Cell Biol 2001; 21(10):3314–3324.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Le Douarin B, Nielsen AL, Garnier JM et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 1996; 15(23):6701–6715.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Peng H, Feldman I, Rauscher FJ 3rd. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: apotential mechanism for regulating the switch between coactivation and corepression. J Mol Biol 2002; 320(3):629–644.PubMedCrossRefGoogle Scholar
  108. 108.
    Yondola MA, Hearing P. The adenovirus E4ORF3 protein binds and reorganizes the TRIM family member transcriptional intermediary factor 1 alpha. J Virol 2007; 81(8):4264–4271.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kikuchi T, Takahashi M, Ueda R et al. Nuclear localization of antigens detected by a monoclonal antibody against a synthetic peptide of rfp finger protein. Hybridoma 1990; 9(2): 189–200.PubMedCrossRefGoogle Scholar
  110. 110.
    Tezel G, Nagasaka T, Iwahashi N et al. Different nuclear/cytoplasmic distributions of RET finger protein in different cell types. Pathol Int 1999; 49(10):881–886.PubMedCrossRefGoogle Scholar
  111. 111.
    Shimono Y, Murakami H, Hasegawa Y et al. RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. J Biol Chem 2000; 275(50):39411–39419.PubMedCrossRefGoogle Scholar
  112. 112.
    Matsuura T, Shimono Y, Kawai K et al. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein. Exp Cell Res 2005; 308(1):65–77.PubMedCrossRefGoogle Scholar
  113. 113.
    Harbers M, Nomura T, Ohno S et al. Intracellular localization of the Ret finger protein depends on a functional nuclear export signal and protein kinase C activation. J Biol Chem 2001;276(51):48596–48607.PubMedCrossRefGoogle Scholar
  114. 114.
    Schmidt D, Muller S. PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 2003; 60(12):2561–2574.PubMedCrossRefGoogle Scholar
  115. 115.
    Cao T, Borden KL, Freemont PS et al. Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci 1997; 110(Pt 14): 1563–1571.PubMedGoogle Scholar
  116. 116.
    Cao T, Duprez E, Borden KL et al. Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J Cell Sci 1998; 111(Pt 10): 1319–1329.PubMedGoogle Scholar
  117. 117.
    Dho SH, Kwon KS. The Ret finger protein induces apoptosis via its RING finger-B box-coiled-coil motif. J Biol Chem 2003; 278(34):31902–31908.PubMedCrossRefGoogle Scholar
  118. 118.
    Morris-Desbois C, Bochard V, Reynaud C et al. Interaction between the Ret finger protein and the Int-6 gene product and colocalisation into nuclear bodies. J Cell Sci 1999; 112(Pt 19):3331–3342.PubMedGoogle Scholar
  119. 119.
    Shyu HW, Hsu SH, Hsieh-Li HM et al. A novel member of the RBCC family, Trif, expressed specifically in the spermatids of mouse testis. Mech Dev 2001; 108(1–2):213–216.PubMedCrossRefGoogle Scholar
  120. 120.
    Shyu HW, Hsu SH, Hsieh-Li HM et al. Forced expression of RNF36 induces cell apoptosis. Exp Cell Res2003; 287(2):301–313.PubMedCrossRefGoogle Scholar
  121. 121.
    Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 2006; 31(1):35–40.PubMedCrossRefGoogle Scholar
  122. 122.
    Short KM, Cox TC. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 2006; 281(13):8970–8980.PubMedCrossRefGoogle Scholar
  123. 123.
    Rhodes DA, de Bono B, Trowsdale J. Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology 2005; 116(4):411–417.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Avela K, Lipsanen-Nyman M, Idanheimo N et al. Gene encoding anew RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet 2000; 25(3):298–301.PubMedCrossRefGoogle Scholar
  125. 125.
    Kallijarvi J, Avela K, Lipsanen-Nyman M et al. The TRIM37 gene encodes a peroxisomal RING-B-box-coiled-coil protein: classification of mulibrey nanism as a new peroxisomal disorder. Am J Hum Genet 2002; 70(5):1215–1228.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kallijarvi J, Lahtinen U, Hamalainen R et al. TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase. Exp Cell Res 2005; 308(1):146–155.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elizabeth C. Batty
    • 1
  • Kirsten Jensen
    • 1
  • Paul S. Freemont
    • 1
  1. 1.Macromolecular Structure and Function Group, Division of Molecular BiosciencesImperial College LondonSouth Kensington, LondonUK

Personalised recommendations