Trim Proteins as Ring Finger E3 Ubiquitin Ligases

  • Kazuhiro Ikeda
  • Satoshi Inoue
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 770)


The tripartite motif (TRIM) proteins harboring the RING fmger, B-boxandcoiled-coil (RBCC) domain motifs form a large protein family. The members of this family are involved in various biological processes, including growth, differentiation, apoptosis and transcription and also in diseases and oncogenesis. Recent studies have revealed that TRIM proteins play key roles in innate antiviral immunity. An accumulating body of evidence has demonstrated that some TRIM proteins function as E3 ubiquitin ligases in specific ubiquitin-mediated protein degradation pathways; however, the precise mechanisms underlying this function have not been fully elucidated. In this chapter, we focus on the TRIM family of proteins specially with regard to E3 ligase.


Ring Finger Ring Finger Protein Ring Finger Domain Tripartite Motif Ubiquitin Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borden KL, Boddy MN, Lally J et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 1995; 14(7):1532–1541.CrossRefGoogle Scholar
  2. 2.
    Barlow PN, Luisi B, Milner A et al. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol 1994; 237(2):201–211.CrossRefGoogle Scholar
  3. 3.
    Reymond A, Meroni G, Fantozzi A et al. The tripartite motif family identifies cell compartments. EMBO J 2001;20(9):2140–2151.CrossRefGoogle Scholar
  4. 4.
    Reddy BA, Etkin LD, Freemont PS. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 1992; 17(9):344–345.CrossRefGoogle Scholar
  5. 5.
    Kakizuka A, Miller WH Jr, Umesono K et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66(4):663–674.CrossRefGoogle Scholar
  6. 6.
    de The H, Lavau C, Marchio A et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66(4):675–684.CrossRefGoogle Scholar
  7. 7.
    Goddard AD, Borrow J, Freemont PS et al. Characterization of a zinc finger gene disrupted by the t(15; 17) in acute promyelocytic leukemia. Science 1991; 254(5036): 1371–1374.CrossRefGoogle Scholar
  8. 8.
    Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266(5182):66–71.CrossRefGoogle Scholar
  9. 9.
    Le Douarin B, Zechel C, Garnier JM et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995; 14(9):2020–2033.CrossRefGoogle Scholar
  10. 10.
    Takahashi R, Deveraux Q, Tamm I et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 1998; 273(14):7787–7790.CrossRefGoogle Scholar
  11. 11.
    Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67:425–479.CrossRefGoogle Scholar
  12. 12.
    Joazeiro CA, Wing SS, Huang H et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999; 286(5438):309–312.CrossRefGoogle Scholar
  13. 13.
    Lorick KL, Jensen JP, Fang S et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96(20): 11364–11369.CrossRefGoogle Scholar
  14. 14.
    Urano T, Saito T, Tsukui T et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 2002; 417(6891):871–875.CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Xiong Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ 2001; 12(4): 175–186.PubMedGoogle Scholar
  16. 16.
    Seol JH, Feldman RM, Zachariae W et al. Cdc53/cullin and the essential Hrtl RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 1999; 13(12):1614–1626.CrossRefGoogle Scholar
  17. 17.
    Pickart CM. Targeting of substrates to the 26S proteasome. FASEB J 1997; 11(13): 1055–1066.CrossRefGoogle Scholar
  18. 18.
    Hicke L. Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 1999; 9(3): 107–112.CrossRefGoogle Scholar
  19. 19.
    Strous GJ, Govers R. The ubiquitin-proteasome system and endocytosis. J Cell Sci 1999; 112(10): 1417–1423.PubMedGoogle Scholar
  20. 20.
    Spence J, Sadis S, Haas AL et al. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 1995; 15(3): 1265–1273.CrossRefGoogle Scholar
  21. 21.
    Arnason T, Ellison MJ. Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 1994; 14(12):7876–7883.CrossRefGoogle Scholar
  22. 22.
    Spence J, Gali RR, Dittmar G et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 2000; 102(1):67–76.CrossRefGoogle Scholar
  23. 23.
    Deng L, Wang C, Spencer E et al. Activation of the IkB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103(2):351–361.CrossRefGoogle Scholar
  24. 24.
    Inoue S, Orimo A, Hosoi T et al. Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc Natl Acad Sci USA 1993; 90(23): 11117–11121.CrossRefGoogle Scholar
  25. 25.
    Orimo A, Inoue S, Ikeda K et al. Molecular cloning, structure and expression of mouse estrogen-responsive finger protein Efp. Co-localization with estrogen receptor mRNA in target organs. J Biol Chem 1995; 270(41):24406–24413.CrossRefGoogle Scholar
  26. 26.
    Ikeda K, Orimo A, Higashi Y et al. Efp as a primary estrogen-responsive gene in human breast cancer. FEBS Lett 2000; 472(1):9–13.CrossRefGoogle Scholar
  27. 27.
    Orimo A, Inoue S, Minowa O et al. Underdeveloped uterus and reduced estrogen responsiveness in mice with disruption of the estrogen-responsive finger protein gene, which is a direct target of estrogen receptor alpha. Proc Natl Acad Sci USA 1999; 96(21): 12027–12032.CrossRefGoogle Scholar
  28. 28.
    Nakasato N, Ikeda K, Urano T et al. A ubiquitin E3 ligase Efp is up-regulated by interferons and conjugated with ISG15. Biochem Biophys Res Commun 2006; 351(2):540–546.CrossRefGoogle Scholar
  29. 29.
    Blomstrom DC, Fahey D, Kutny R et al. Molecular characterization of the interferon-induced 15-kDaprotein. Molecular cloning and nucleotide and amino acid sequence. J Biol Chem 1986; 261(19):8811–8816.PubMedGoogle Scholar
  30. 30.
    Staub O. Ubiquitylation and isgylation: overlapping enzymatic cascades do the job. Sci STKE 2004; 10:pe43.Google Scholar
  31. 31.
    Wong JJ, Pung YF, Sze NS et al. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci USA 2006; 103(28): 10735–10740.CrossRefGoogle Scholar
  32. 32.
    Zou W, Wang J, Zhang DE. Negative regulation of ISG15 E3 ligase EFP through its autoISGylation. Biochem Biophys Res Commun 2007; 354(1):321–327.CrossRefGoogle Scholar
  33. 33.
    Loeb KR, Haas AL. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 1992; 267(11):7806–7813.PubMedGoogle Scholar
  34. 34.
    Ritchie KJ, Hahn CS, Kim KI et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 2004; 10(12): 1374–1378.CrossRefGoogle Scholar
  35. 35.
    Okumura A, Lu G, Pitha-Rowe I et al. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA 2006; 103(5): 1440–1445.CrossRefGoogle Scholar
  36. 36.
    Lenschow DJ, Giannakopoulos NV, Gunn LJ et al. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol 2005; 79(22): 13974–13983.CrossRefGoogle Scholar
  37. 37.
    Lenschow DJ, Lai C, Frias-Staheli N et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes and Sindbis viruses. Proc Natl Acad Sci USA 2007; 104(4): 1371–1376.CrossRefGoogle Scholar
  38. 38.
    Gack MU, Shin YC, Joo CH et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007; 446(7138):916–920.CrossRefGoogle Scholar
  39. 39.
    Yoneyama M, Kikuchi M, Matsumoto K et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5 and LGP2 in antiviral innate immunity. J Immunol 2005; 175(5):2851–2858.CrossRefGoogle Scholar
  40. 40.
    Poeck H, Inoue S, Ruland J et al. RIG-I is a dual activator of Card9 and inflammasome signaling for IL-1β production upon RNA virus recognition. Nat Immunol. in press.Google Scholar
  41. 41.
    Gack MU, Albrecht RA, Urano T et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 2009; 5(5):439–449.CrossRefGoogle Scholar
  42. 42.
    Opitz JM. G syndrome (hypertelorism with esophageal abnormality and hypospadias, or hypospadias-dysphagia, or “Opitz-Frias” or “Opitz-G” syndrome)—perspective in 1987 and bibliography. Am J Med Genet 1987; 28(2):275–285.CrossRefGoogle Scholar
  43. 43.
    Robin NH, Opitz JM, Muenke M. Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q and a review of the literature. Am J Med Genet 1996; 62(3):305–317.CrossRefGoogle Scholar
  44. 44.
    Quaderi NA, Schweiger S, Gaudenz K et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 1997; 17(3):285–291.CrossRefGoogle Scholar
  45. 45.
    Gaudenz K, Roessler E, Quaderi N et al. Opitz G/BBB syndrome in Xp22: mutations in the MID1 gene cluster in the carboxy-terminal domain. Am J Hum Genet 1998; 63(3):703–710.CrossRefGoogle Scholar
  46. 46.
    Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001; 27(3):286–291.CrossRefGoogle Scholar
  47. 47.
    Short KM, Hopwood B, Yi Z et al. MID1 and MID2 homo and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol 2002; 3(1): 1.CrossRefGoogle Scholar
  48. 48.
    Niikura T, Hashimoto Y, Tajima H et al. A tripartite motif protein TRIM 11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci 2003; 17(6):1150–1158.CrossRefGoogle Scholar
  49. 49.
    Sibilia J. Ro(SS-A) and anti-Ro(SS-A): an update. Rev Rhum Engl Ed 1998; 65(l):45–57.PubMedGoogle Scholar
  50. 50.
    Itoh Y, Reichlin M. Autoantibodies to the Ro/SSA antigen are conformation dependent. I: Anti-60 kD antibodies are mainly directed to the native protein; anti-52 kD antibodies are mainly directed to the denatured protein. Autoimmunity 1992; 14(1):57–65.CrossRefGoogle Scholar
  51. 51.
    Takahata M, Bohgaki M, Tsukiyama T et al. Ro52 functionally interacts with IgG1 and regulates its quality control via the ERAD system. Mol Immunol 2008; 45(7):2045–2054.CrossRefGoogle Scholar
  52. 52.
    Kong HJ, Anderson DE, Lee CH et al. Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol 2007; 179(1):26–30.CrossRefGoogle Scholar
  53. 53.
    Kudryashova E, Kudryashov D, Kramerova I et al. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J Mol Biol 2005; 354(2):413–424.CrossRefGoogle Scholar
  54. 54.
    Centner T, Yano J, Kimura E et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001; 306(4):717–726.CrossRefGoogle Scholar
  55. 55.
    Gregorio CC, Perry CN, McElhinny AS. Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle. J Muscle Res Cell Motil 2005; 26(6–8):389–400.PubMedGoogle Scholar
  56. 56.
    McElhinny AS, Kakinuma K, Sorimachi H et al. Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure andmay havenuclearfunctions viaits interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 2002; 157(1):125–136.CrossRefGoogle Scholar
  57. 57.
    Kedar V, McDonough H, Ary R et al. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA 2004; 101(52):18135–18140.CrossRefGoogle Scholar
  58. 58.
    Bodine SC, Latres E, Baumhueter S et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294(5547): 1704–1708.CrossRefGoogle Scholar
  59. 59.
    Clarke BA, Drujan D, Willis MS et al. The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metabolism 2007; 6(5):376–385.CrossRefGoogle Scholar
  60. 60.
    Stremlau M, Owens CM, Perron MJ et al. The cytoplasmic body component TRIM5 alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427(6977):848–853.CrossRefGoogle Scholar
  61. 61.
    Sakuma R, Noser JA, Ohmine S et al. Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 2007; 13(5):631–635.CrossRefGoogle Scholar
  62. 62.
    Hatziioannou T, Perez-Caballero D, Yang A et al. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5. Proc Natl Acad Sci USA 2004; 101(29): 10774–10779.CrossRefGoogle Scholar
  63. 63.
    Keckesova Z, Ylinen LM, Towers GJ. The human and African green monkey TRIM5α genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 2004; 101(29) 10780–10785.CrossRefGoogle Scholar
  64. 64.
    Perez-Caballero D, Hatziioannou T, Yang A et al. Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 2005; 79(14):8969–8978.CrossRefGoogle Scholar
  65. 65.
    Sebastian S, Luban J. TRIM5alpha selectively binds arestriction-sensitive retroviral capsid. Retrovirology 2005; 2:40.CrossRefGoogle Scholar
  66. 66.
    Diaz-Griffero F, Li X, Javanbakht H et al. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 2006; 349(2):300–315.CrossRefGoogle Scholar
  67. 67.
    Asaoka K, Ikeda K, Hishinuma T et al. A retrovirus restriction factor TRIM5α is transcriptionally regulated by interferons. Biochem Biophys Res Commun 2005; 338(4): 1950–1956.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kazuhiro Ikeda
    • 1
  • Satoshi Inoue
    • 1
    • 2
  1. 1.Division of Gene Regulation and Signal Transduction, Research Center for Genomic MedicineSaitama Medical UniversitySaitamaJapan
  2. 2.Departments of Geriatric Medicine and Anti-Aging Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan

Personalised recommendations