Skip to main content

Microwave Synthesis of Metal Oxide Nanoparticles

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Abstract

This chapter summarizes microwave irradiation methods for the preparation of metal oxide nanoparticles and their catalytic and sensing properties and applications. Microwave irradiation provides rapid decomposition of metal precursors and can be extended for synthesis of a wide range of metal oxide nanoparticles with various compositions, sizes and shapes. This chapter introduces the microwave method and describes the nucleation and growth process for the formation nanocrystals. We offer a broad overview of metal oxide nanostructures synthesized by microwave irradiation including: ZnO, TiO2, CeO2, other rare earth metal oxides, transitional metal oxides and metal ferrite nanostructures. Finally, we describe the application of metal oxides in the photocatalytic degradation of organic dyes and gas sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chow GM, Gonsalves KE (1996) Nanotechnology: molecularly designed materials. American Chemical Society, Washington

    Google Scholar 

  2. Edelstein AS, Cammarata RC (1996) Nanomaterials: synthesis, properties and applications. Institute of Physics Publishing, Bristol and Philadelphia

    Book  Google Scholar 

  3. Liz-Marzan LM, Kamat PV (2003) Nanoscale materials. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  4. Nagarajan R, Hatton TA (2008) Nanoparticles: synthesis, stabilization, passivation and functionalization. American Chemical Society, Washington

    Google Scholar 

  5. Ozin GA, Arsenault AC (2005) Nano chemistry: a chemical approach to nanomaterials. RSC Publishing, Cambridge

    Google Scholar 

  6. Schmid G (2004) Nanoparticles: from Theory to Application. Wiley, Weinheim

    Google Scholar 

  7. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  8. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  9. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  10. El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333

    Article  CAS  Google Scholar 

  11. Li Y, Malik MA, O’Brien P (2005) Synthesis of single-crystalline CoP nanowires by a one-pot metal-organic route. J Am Chem Soc 127:16020–16021

    Article  CAS  Google Scholar 

  12. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  13. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344

    Article  CAS  Google Scholar 

  14. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  CAS  Google Scholar 

  15. Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353

    Article  CAS  Google Scholar 

  16. Regulacio MD, Han M-Y (2010) Composition-tunable alloyed semiconductor nanocrystals. Acc Chem Res 43:621–630

    Article  CAS  Google Scholar 

  17. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  CAS  Google Scholar 

  18. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  19. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  20. Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Microwave synthesis of bimetallic nanoalloys and co oxidation on ceria-supported nanoalloys. Chem Mater 21:2825–2834

    Article  CAS  Google Scholar 

  21. Abdelsayed V, Panda AB, Glaspell GP, El-Shall MS (2008) In nanoparticles: synthesis, stabilization, passivation, and functionalization. In: Nagarajan R, Hatton TA (Eds) American Chemical Society, Washington

    Google Scholar 

  22. Boxall DL, Lukehart CM (2001) Rapid synthesis of Pt or Pd/Carbon nanocomposites using microwave irradiation. Chem Mater 13:806–810

    Article  CAS  Google Scholar 

  23. Chen WX, Zhao J, Lee JY, Liu ZL (2005) Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Mater Chem Phys 91:124–129

    Article  CAS  Google Scholar 

  24. El-Shall MS, Abdelsayed V, Khder A, Hassan HMA, El-Kaderi HM, Reich TE (2009) Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. J Mater Chem 19:7625–7631

    Article  CAS  Google Scholar 

  25. Gallis KW, Landry CC (2001) Rapid calcination of nanostructured silicate composites by microwave irradiation. Adv Mater 13:23

    Article  CAS  Google Scholar 

  26. Gerbec JA, Magana D, Washington A, Strouse GF (2005) Microwave-enhanced reaction rates for nanoparticle synthesis. J Am Chem Soc 127:15791–15800

    Article  CAS  Google Scholar 

  27. Glaspell G, Fuoco L, El-Shall MS (2005) Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. J Phys Chem B 109:17350–17355

    Article  CAS  Google Scholar 

  28. Harpeness R, Gedanken A (2004) Microwave synthesis of core, àíShell Gold/Palladium Bimetallic Nanoparticles. Langmuir 20:3431–3434

    Article  CAS  Google Scholar 

  29. Hassan HMA, Abdelsayed V, Khder A, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837

    Article  CAS  Google Scholar 

  30. He J, Zhao XN, Zhu JJ, Wang J (2002) Preparation of CdS nanowires by the decomposition of the complex in the presence of microwave irradiation. J Cryst Growth 240:389–394

    Article  CAS  Google Scholar 

  31. Kundu S, Peng LH, Liang H (2008) A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation. Inorg Chem 47:6344–6352

    Article  CAS  Google Scholar 

  32. Liang J, Deng Z, Jiang X, Li F, Li Y (2002) Photoluminescence of Tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg Chem 41:3602–3604

    Article  CAS  Google Scholar 

  33. Mohamed MB, AbouZeid KM, Abdelsayed V, Aljarash AA, El-Shall MS (2010) Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of Dioleamide by Gold Nanocatalysis. ACS Nano 4:2766–2772

    Article  CAS  Google Scholar 

  34. Panda AB, Glaspell G, El-Shall MS (2006) Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires. J Am Chem Soc 128:2790–2791

    Article  CAS  Google Scholar 

  35. Panda AB, Glaspell G, El-Shall MS (2007) Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J Phys Chem C 111:1861–1864

    Article  CAS  Google Scholar 

  36. Pastoriza-Santos I, Liz-Marzan LM (2002) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894

    Article  CAS  Google Scholar 

  37. Patra CR, Alexandra G, Patra S, Jacob DS, Gedanken A, Landau A, Gofer Y (2005) Microwave approach for the synthesis of rhabdophane-type lanthanide orthophosphate (Ln = La, Ce, Nd, Sm, Eu, Gd and Tb) nanorods under solvothermal conditions. New J Chem 29:733–739

    Article  CAS  Google Scholar 

  38. Siamaki AR, Khder AERS, Abdelsayed V, El-Shall MS, Gupton BF (2011) Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. J Catal 279:1–11

    Article  CAS  Google Scholar 

  39. Wang HQ, Thomas T (2009) Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3:3804–3808

    Article  CAS  Google Scholar 

  40. Zedan AF, Sappal S, Moussa S, El-Shall MS (2010) Ligand-controlled microwave synthesis of cubic and hexagonal CdSe nanocrystals supported on Graphene. Photoluminescence quenching by Graphene. J Phys Chem C 114:19920–19927

    Article  CAS  Google Scholar 

  41. Zhu J, Palchik O, Chen S, Gedanken A (2000) Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles. J Phys Chem B 104:7344–7347

    Article  CAS  Google Scholar 

  42. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  43. Kubrakova I, Toropchenova E (2008) Microwave heating for enhancing efficiency of analytical operations. Inorg Mater 44:1509–1519

    Article  CAS  Google Scholar 

  44. Abraham FF (1974) Homogeneous nucleation theory. Academic, New York

    Book  Google Scholar 

  45. Kashchiev D (2000) Nucleation, basic theory with applications. Butterworth Heinemann, Burlington

    Google Scholar 

  46. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of Monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  47. Ratke L, Voorhees PW (2002) Growth and coarsening—Ostwald ripening in materials processing. Springer, New York

    Google Scholar 

  48. Talapin DV, Rogach AL, Haase M, Weller H (2001) Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J Phys Chem B 105:12278–12285

    Article  CAS  Google Scholar 

  49. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H (2002) Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J Am Chem Soc 124:5782–5790

    Article  CAS  Google Scholar 

  50. Chang JF, Kuo HH, Leu IC, Hon MH (2002) The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens Actuators B Chem 84:258–264

    Article  Google Scholar 

  51. Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871

    Article  CAS  Google Scholar 

  52. Gao PX, Ding Y, Mai WJ, Hughes WL, Lao CS, Wang ZL (2005) Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309:1700–1704

    Article  CAS  Google Scholar 

  53. Gargas DJ, Moore MC, Ni A, Chang SW, Zhang ZY, Chuang SL, Yang PD (2010) Whispering gallery mode lasing from zinc oxide hexagonal Nanodisks. ACS Nano 4:3270–3276

    Article  CAS  Google Scholar 

  54. Han JB, Fan FR, Xu C, Lin SS, WeiM, Duan X, Wang ZL (2010) ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21

    Google Scholar 

  55. He JH, Hsu JH, Wang CW, Lin HN, Chen LJ, Wang ZL (2006) Pattern and feature designed growth of ZnO nanowire arrays for vertical devices. J Phys Chem B 110:50–53

    Article  CAS  Google Scholar 

  56. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  57. Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407–409

    Article  CAS  Google Scholar 

  58. Lupan O, Emelchenko GA, Ursaki VV, Chai G, Redkin AN, Gruzintsev AN, Tiginyanu IM, Chow L, Ono LK, Roldan Cuenya B, Heinrich H, Yakimov EE (2010) Synthesis and characterization of ZnO nanowires for nanosensor applications. Mater Res Bull 45:1026–1032

    Article  CAS  Google Scholar 

  59. Minne SC, Manalis SR, Quate CF (1995) Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl Phys Lett 67:3918–3920

    Article  CAS  Google Scholar 

  60. Wang XD, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426

    Article  CAS  Google Scholar 

  61. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33

    Article  CAS  Google Scholar 

  62. Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  CAS  Google Scholar 

  63. Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363:123–128

    Article  CAS  Google Scholar 

  64. Zhu GA, Yang RS, Wang SH, Wang ZL (2010) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10:3151–3155

    Article  CAS  Google Scholar 

  65. Bacaksiz E, Yilmaz S, Parlak M, Varilci A, Altunbas M (2009) Effects of annealing temperature on the structural and optical properties of ZnO hexagonal pyramids. J Alloy Compd 478:367–370

    Article  CAS  Google Scholar 

  66. Bilecka I, Elser P, Niederberger M (2009) Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano 3:467–477

    Article  CAS  Google Scholar 

  67. El-Shall MS, Graiver D, Pernisz U, Baraton MI (1995) Synthesis and characterization of nanoscale zinc oxide particles: I. laser vaporization/condensation technique. Nanostruct Mater 6:297–300

    Article  CAS  Google Scholar 

  68. El-Shall MS, Li S (1998) Synthesis and characterization of metal and semiconductor nanopartilces. In: Duncan MA (ed) Advances in metal and semiconductor clusters, vol 4. JAI Press Inc, pp 115–177

    Google Scholar 

  69. Huang AS, Caro J (2010) Controlled growth of zinc oxide crystals with tunable shape. J Cryst Growth 312:947–952

    Article  CAS  Google Scholar 

  70. Lao CS, Gao PM, Sen Yang R, Zhang Y, Dai Y, Wang ZL (2006) Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface. Chem Phys Lett 417:358–362

    Article  CAS  Google Scholar 

  71. Munoz-Hernandez G, Escobedo-Morales A, Pal U (2009) Thermolytic growth of ZnO nanocrystals: morphology control and optical properties. Cryst Growth Des 9:297–300

    Article  CAS  Google Scholar 

  72. Valerini D, Caricato AP, Lomascolo M, Romano F, Taurino A, Tunno T, Martino M (2008) Zinc oxide nanostructures grown by pulsed laser deposition. Appl Phys Mater Sci Process 93:729–733

    Article  CAS  Google Scholar 

  73. Wahab R, Ansari SG, Seo HK, Kim YS, Suh EK, Shin HS (2009) Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process. Solid State Sci 11:439–443

    Article  CAS  Google Scholar 

  74. Wang XD, Song JH, Wang ZL (2006) Single-crystal nanocastles of ZnO. Chem Phys Let 424:86–90

    Article  CAS  Google Scholar 

  75. Zhang JW, Zhu PL, Li JH, Chen JM, Wu ZS, Zhang ZJ (2009) Fabrication of octahedral-shaped polyol-based zinc alkoxide particles and their conversion to octahedral polycrystalline ZnO or single-crystal ZnO nanoparticles. Cryst Growth Des 9:2329–2334

    Article  CAS  Google Scholar 

  76. Zhang R, Kerr LL (2007) A simple method for systematically controlling ZnO crystal size and growth orientation. J Solid State Chem 180:988–994

    Article  CAS  Google Scholar 

  77. Zhang ZH, Lu MH, Xu HR, Chin WS (2007) Shape-controlled synthesis of zinc oxide: a simple method for the preparation of metal oxide nanocrystals in non-aqueous medium. Chem-a Eur J 13:632–638

    Article  CAS  Google Scholar 

  78. Zhou F, Zhao XM, Xu H, Yuan CG (2007) CeO2 spherical crystallites: synthesis, formation mechanism, size control, and electrochemical property study. J Phys Chem C 111:1651–1657

    Article  CAS  Google Scholar 

  79. Zhou X, Xie ZX, Jiang ZY, Kuang Q, Zhang SH, Xu T, Huang RB, Zheng LS (2005) Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chem Commun 44:5572–5574

    Article  CAS  Google Scholar 

  80. Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    Article  CAS  Google Scholar 

  81. Ding KL, Miao ZJ, Liu ZM, Zhang ZF, Han BX, An GM, Miao SD, Xie Y (2007) Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J Am Chem Soc 129:6362

    Article  CAS  Google Scholar 

  82. Huang, W. P.; Tang, X. H.; Wang, Y. Q.; Koltypin, Y.; Gedanken, A. (2000) Selective synthesis of anatase and rutile via ultrasound irradiation. Chem Commun 1415-1416

    Google Scholar 

  83. Jun YW, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J Am Chem Soc 125:15981–15985

    Article  CAS  Google Scholar 

  84. Wang C-C, Ying JY (1999) Sol-gel synthesis and hydrothermal processing of anatase and rutile Titania nanocrystals. Chem Mater 11:3113–3120

    Article  CAS  Google Scholar 

  85. Wilson GJ, Will GD, Frost RL, Montgomery SA (2002) Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids. J Mater Chem 12:1787–1791

    Article  CAS  Google Scholar 

  86. Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc 121:1613–1614

    Article  CAS  Google Scholar 

  87. Mao YB, Wong SS (2006) Size- and shape-dependent transformation of nanosized titanate into analogous anatase Titania nanostructures. J Am Chem Soc 128:8217–8226

    Article  CAS  Google Scholar 

  88. Zhu HY, Lan Y, Gao XP, Ringer SP, Zheng ZF, Song DY, Zhao JC (2005) Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc 127:6730–6736

    Article  CAS  Google Scholar 

  89. Service RF (1996) Small clusters hit the big time. Science 271:920–922

    Article  CAS  Google Scholar 

  90. Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Article  CAS  Google Scholar 

  91. Srivatsan S et al (1960) Reverse micellar synthesis of cerium oxide nanoparticles. Nanotechnology 2005:16

    Google Scholar 

  92. Yin LX, Wang YQ, Pang GS, Koltypin Y, Gedanken A (2002) Sonochemical synthesis of cerium oxide nanoparticles—Effect of additives and quantum size effect. J Colloid Interface Sci 246:78–84

    Article  CAS  Google Scholar 

  93. Kompe K, Borchert H, Storz J, Lobo A, Adam S, Moller T, Haase M (2003) Green-emitting CePO4: Th/LaPO4 core-shell nanoparticles with 70 % photoluminescence quantum yield. Angew Chem Int Ed 42:5513–5516

    Article  CAS  Google Scholar 

  94. Si R, Zhang YW, You LP, Yan C (2005) Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew Chem Int Ed 44:3256–3260

    Article  CAS  Google Scholar 

  95. Stouwdam JW, van Veggel F (2002) Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett 2:733–737

    Article  CAS  Google Scholar 

  96. Yada M, Kitamura H, Ichinose A, Machida M, Kijima T (1999) Mesoporous magnetic materials based on rare earth oxides. Angew Chem Int Ed 38:3506–3510

    Article  CAS  Google Scholar 

  97. Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Dujardin C, Brenier A, Zhang W, Tillement O, Bernstein E, Perriat P (2003) Synthesis and luminescent properties of sub-5 nm lanthanide oxides nanoparticles. J Lumin 102:445–450

    Article  CAS  Google Scholar 

  98. Ammar S, Helfen A, Jouini N, Fievet F, Rosenman I, Villain F, Molinie P, Danot M (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192

    Article  CAS  Google Scholar 

  99. Coey JMD, Berkowitz AE, Balcells L, Putris FF, Parker FT (1998) Magnetoresistance of magnetite. Appl Phys Lett 72:734–736

    Article  CAS  Google Scholar 

  100. Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)(2)](2). Science 303:821–823

    Article  CAS  Google Scholar 

  101. Hafeli U, Schutt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carriers. Plenum Press, New York

    Google Scholar 

  102. Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34:3745–3754

    Article  CAS  Google Scholar 

  103. Kiyomura T, Maruo Y, Gomi M (2000) Electrical properties of MgO insulating layers in spin-dependent tunneling junctions using Fe[sub 3]O[sub 4]. J Appl Phys 88:4768–4771

    Article  CAS  Google Scholar 

  104. Ngo AT, Pileni MP (2001) Assemblies of ferrite nanocrystals: Partial orientation of the easy magnetic axes. J Phys Chem B 105:53–58

    Article  CAS  Google Scholar 

  105. Patolsky F, Weizmann Y, Katz E, Willner I (2003) Magnetically amplified DNA assays (MADA): sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles. Angew Chem Int Ed 42:2372–2376

    Article  CAS  Google Scholar 

  106. Pham-Huu C, Keller N, Estournes C, Ehret G, Ledoux MJ (2002) Synthesis of CoFe2O4 nanowire in carbon nanotubes. A new use of the confinement effect. Chem Commun 1882–1883

    Google Scholar 

  107. Redl FX, Cho KS, Murray CB, O’Brien S (2003) Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423:968–971

    Article  CAS  Google Scholar 

  108. Sorenson TA, Morton SA, Waddill GD, Switzer JA (2002) Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. J Am Chem Soc 124:7604–7609

    Article  CAS  Google Scholar 

  109. Sousa MH, Tonrinho FA, Depeyrot J, da Silva GJ, Lara M (2001) New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures. J Phys Chem B 105:1168–1175

    Article  CAS  Google Scholar 

  110. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  111. Versluijs JJ, Bari MA, Coey JMD (2001) Magnetoresistance of half-metallic oxide nanocontacts. Phys Rev Lett 87:026601

    Article  CAS  Google Scholar 

  112. Fatemi DJ, Harris VG, Browning VM, Kirkland JP (1998) Processing and cation redistribution of MnZn ferrites via high-energy ball milling. J Appl Phys 83:6867–6869

    Article  CAS  Google Scholar 

  113. Lopez Perez JA, Lopez Quintela MA, Mira J, Rivas J, Charles SW (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method. J Phys Chem B 101:8045–8047

    Article  CAS  Google Scholar 

  114. Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445–3450

    Article  CAS  Google Scholar 

  115. Sugimoto T, Shimotsuma Y, Itoh H (1998) Synthesis of uniform cobalt ferrite particles from a highly condensed suspension of beta-FeOOH and beta-Co(OH)(2) particles. Powder Technol 96:85–89

    Article  CAS  Google Scholar 

  116. Prozorov T, Prozorov R, Koltypin Y, Felner I, Gedanken A (1998) Sonochemistry under an applied magnetic field: Äâ determining the shape of a magnetic particle. J Phys Chem B 102:10165–10168

    Article  CAS  Google Scholar 

  117. Hyeon T, Chung Y, Park J, Lee SS, Kim Y-W, Park BH (2002) Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J Phys Chem B 106:6831–6833

    Article  CAS  Google Scholar 

  118. Kang S, Harrell JW, Nikles DE (2002) Reduction of the fcc to L10 ordering temperature for self-assembled FePt nanoparticles containing Ag. Nano Lett 2:1033–1036

    Article  CAS  Google Scholar 

  119. Rockenberger JR, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596

    Article  CAS  Google Scholar 

  120. Jana NR, Chen Y, Peng X (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co., Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935

    Article  CAS  Google Scholar 

  121. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  122. Kang E, Park J, Hwang Y, Kang M, Park J-G, Hyeon T (2004) Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J Phys Chem B 108:13932–13935

    Article  CAS  Google Scholar 

  123. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2003) Monodisperse MFe2O4 (M = Fe, Co., Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  124. Panda AB, GlaspellG, El-Shall MS (in preparation)

    Google Scholar 

  125. Boal AK, Das K, Gray M, Rotello VM (2002) Monolayer exchange chemistry of Œ ≥ -Fe2O3 nanoparticles. Chem Mater 14:2628–2636

    Article  CAS  Google Scholar 

  126. Rajamathi M, Ghosh M, Seshadri R (2002) Hydrolysis and amine-capping in a glycol solvent as a route to soluble maghemite gamma-Fe2O3 nanoparticles. Chem Commun 1152–1153

    Google Scholar 

  127. Klug HP, Alexander LE (1962) X-Ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  128. Bahnemann D, Bockelmann D, Goslich R (1991) Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Sol Energy Mater 24:564–583

    Article  CAS  Google Scholar 

  129. Bohle DS, Spina CJ (2009) Cationic and anionic surface binding sites on nanocrystalline zinc oxide: surface influence on photoluminescence and photocatalysis. J Am Chem Soc 131:4397–4404

    Article  CAS  Google Scholar 

  130. Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278

    Article  CAS  Google Scholar 

  131. Gaya UI, Abdullah A (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C-Photochem Rev 9:1–12

    Article  CAS  Google Scholar 

  132. Hariharan C (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl Catal a-Gen 304:55–61

    Article  CAS  Google Scholar 

  133. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  134. Kamat PV, Meisel D (2002) Nanoparticles in advanced oxidation processes. Curr Opin Colloid Interface Sci 7:282–287

    Article  CAS  Google Scholar 

  135. Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K (2004) Degradation of bisphenol A in water by the photo-Fenton reaction. J Photochem Photobiol a Chem 162:297–305

    Article  CAS  Google Scholar 

  136. Lakshmi S, Renganathan R, Fujita S (1995) Study on TiO2-mediated photocatalytic degradation of methylene-blue. J Photochem Photobiol a Chem 88:163–167

    Article  CAS  Google Scholar 

  137. Lu F, Cai WP, Zhang YG (2008) ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater 18:1047–1056

    Article  CAS  Google Scholar 

  138. Malik PK, Sanyal SK (2004) Kinetics of decolourisation of azo dyes in wastewater by UV/H2O2 process. Sep Purif Technol 36:167–175

    Article  CAS  Google Scholar 

  139. Matthews RW (1984) Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium-dioxide suspensions. J Chem Soc Faraday Trans I 80:457–471

    Article  CAS  Google Scholar 

  140. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater 89:303–317

    Article  CAS  Google Scholar 

  141. Ollis DF (1991) Solar-assisted photocatalysis for water-purification—issues, data, questions. In: Pelizzetti E, Schiavello M (eds) Photochemical conversion and storage of solar energy. Kluwer Academic Publishing, Dordrecht, pp 593–622

    Chapter  Google Scholar 

  142. Pirkanniemi K, Sillanpaa M (2002) Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48:1047–1060

    Article  CAS  Google Scholar 

  143. Ray AK, Beenackers A (1998) Novel photocatalytic reactor for water purification. AIChE J 44:477–483

    Article  CAS  Google Scholar 

  144. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Mater Solar Cells 77:65–82

    Article  CAS  Google Scholar 

  145. Sobana N, Swaminathan M (2007) The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep Purif Technol 56:101–107

    Article  CAS  Google Scholar 

  146. Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, Ag2S, SB2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98:3183–3188

    Article  CAS  Google Scholar 

  147. Wang JC, Liu P, Fu XZ, Li ZH, Han W, Wang XX (2009) Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes. Langmuir 25:1218–1223

    Article  CAS  Google Scholar 

  148. Yuan JQ, Choo ESG, Tang XS, Sheng Y, Ding J, Xue JM (2010) Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications. Nanotechnology 21:185606

    Article  CAS  Google Scholar 

  149. Zeng HB, Cai WP, Liu PS, Xu XX, Zhou HJ, Klingshirn C, Kalt H (2008) ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. Acs Nano 2:1661–1670

    Article  CAS  Google Scholar 

  150. Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, Cambridge

    Google Scholar 

  151. Chu XF, Chen TY, Zhang WB, Zheng BQ, Shui HF (2009) Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens Actuators B-Chem 142:49–54

    Article  CAS  Google Scholar 

  152. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656

    Article  CAS  Google Scholar 

  153. Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B-Chem 23:103–109

    Article  Google Scholar 

  154. Zhang G, Liu ML (2000) Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens Actuators B-Chem 69:144–152

    Article  Google Scholar 

  155. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2:36–50

    Article  CAS  Google Scholar 

  156. Pan QY, Xu JQ, Dong XW, Zhang JP (2000) Gas-sensitive properties of nanometer-sized SnO2. Sens Actuators B-Chem 66:237–239

    Article  Google Scholar 

  157. Xu JQ, Pan QY, Shun YA, Tian ZZ (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sens Actuators B-Chem 66:277–279

    Article  Google Scholar 

  158. Srivastava A, Lakshmikumar ST, Srivastava AK, Rashmi Jain K (2007) Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique. Sens Actuators B Chem 126:583–587

    Google Scholar 

  159. Cho PS, Kim KW, Lee JH (2007) Improvement of dynamic gas sensing behavior of SnO2 acicular particles by microwave calcination. Sens Actuators B-Chem 123:1034–1039

    Article  CAS  Google Scholar 

  160. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13:9–24

    Article  Google Scholar 

  161. Peng L, Zhao QD, Wang DJ, Zhai JL, Wang P, Pang S, Xie TF (2009) Ultraviolet-assisted gas sensing: a potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens Actuators B Chem 136:80–85

    Article  CAS  Google Scholar 

  162. Qurashi A, Tabet N, Faiz M, Yamzaki T (2009) Ultra-fast microwave synthesis of ZnO nanowires and their dynamic response toward hydrogen gas. Nanoscale Res Lett 4:948–954

    Article  CAS  Google Scholar 

  163. Krishnakumar T, Jayaprakash R, Pinna N, Donato N, Bonavita A, Micali G, Neri G (2009) CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sens Actuators B Chem 143:198–204

    Article  CAS  Google Scholar 

  164. Jing ZH, Zhan JH (2008) Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv Mater 20:4547–4551

    Article  CAS  Google Scholar 

  165. Epifani M, Prades JD, Comini E, Pellicer E, Avella M, Siciliano P, Faglia G, Cirera A, Scotti R, Morazzoni F, Morante JR (2008) The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J Phys Chem C 112:19540–19546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CHE-0911146) for the support of this work. We also thank NSF (OISE-0938520) for the support of the “US-Egypt Advanced Studies Institute on Nanomaterials and Nanocatalysis for Energy, Petrochemicals and Environmental Applications” which facilitated the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. El-Shall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Herring, N.P. et al. (2013). Microwave Synthesis of Metal Oxide Nanoparticles. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_8

Download citation

Publish with us

Policies and ethics