Skip to main content

Atomic Layer Deposition for Metal Oxide Nanomaterials

  • Chapter
  • First Online:
  • 2823 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Solid state gas sensors based on semiconducting metal oxides have been widely investigated and utilized in environmental monitoring, chemical process controls and personal safety. In recent years, one dimensional nanostructures, such as nanowires, nanorods, nanotubes and nanobelts, have attracted much attention due to their great potential application in gas sensing, and for overcoming fundamental limitations due to their ultra high surface-to-volume ratio. A variety of methods have been developed to fabricate these nanostructures. The nanostructure based gas sensors demonstrated excellent response and recovery characteristics. However, the developed methods are not convenient for mass production and improvements on sensitivity, selectivity and long term stability are still needed. Atomic layer deposition (ALD) is a film deposition technique based on the sequential use of self-terminating surface reactions. Due to the unique nature of the reaction process, ALD becomes an ideal deposition technique to form atomic thin films and nanolaminate structures. ALD is finding ever more applications for emerging nanodevices. The potential to control thickness at the sub-nm level, and the ability to deposit thin films over highly corrugated substrates with high aspect ratio topography makes ALD of great interest in fabrication of one dimensional nanomaterial. Utilizing fabrication through nanotechnology, ALD has found new opportunities in gas sensors based on metal oxide semiconductors. In this chapter, the general characteristics of atomic layer deposition, the sensing performance enhancements by quasi-1 dimensional nanostructures and nanomaterials, the method to fabricate such nanostructures and the recent exploration of ALD in gas sensing studies are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References:

  1. Sayago I, Gutierrez J, Ares L, Robla JI, Horrillo MC, Getino J, Agapito JA (1995) Long—term reliability of gas sensors for detection of nitrogen oxides. Sens Actuators B 26(1–3):56–58

    Article  Google Scholar 

  2. Meixner H, Lampe U (1996) Metal oxide sensors. Sens Actuators B 33(1):198–202

    Article  Google Scholar 

  3. Martinelli G, Carotta MC (1995) Thick-film gas sensors. Sens Actuators B 23:157–161

    Article  Google Scholar 

  4. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35

    Article  Google Scholar 

  5. Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839

    Article  CAS  Google Scholar 

  6. Watsont J, Ihokura K, Colest GSV (1993) The tin dioxide gas sensor. Measur Sci Technol 4:711–719

    Article  Google Scholar 

  7. Safonova O, Bezverkhy I, Fabrichnyi P, Rumyantseva M, Gaskov A (2002) Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements. J Mater Chem 12:1174–1178

    Article  CAS  Google Scholar 

  8. Sahm T, Gurlo A, Bârsan N, Weimar U (2006) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens Actuators B 118(1–2):78–83

    Article  Google Scholar 

  9. Chwieroth B, Patton BR, Wang Y (2001) Conduction and gas- surface reaction modeling in metal oxide gas sensors. J Electroceram 6(1):27–41

    Article  CAS  Google Scholar 

  10. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167

    Article  CAS  Google Scholar 

  11. Gulati S, Mehan N, Goyal DP, Mansingh A (2002) Electrical equivalent model for SnO2 bulk sensors. Sens Actuators B 87:309–320

    Article  Google Scholar 

  12. Mizsei J (1995) How can sensitive and selective semiconductor gas sensors be made? Sens Actuators B 23(2–3):173–176

    Article  Google Scholar 

  13. Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53:4448–4455

    Article  CAS  Google Scholar 

  14. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155

    Article  Google Scholar 

  15. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19

    Article  Google Scholar 

  16. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide semiconductor in chemiresistors: does the nanoscale matter? Small 2(1):36–50

    Article  CAS  Google Scholar 

  17. Jin ZH, Zhou HJ, Jin ZL, Savinell RF, Liu CC (1998) Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens Actuators B 52:188–194

    Article  Google Scholar 

  18. Yoo DJ, Tamaki J, Park SJ, Miura N, Yamazoe N (1995) Effects of thickness and calcination temperature on tin dioxide sol-derived thin film sensor. J Electrochem Soc 142:L105–L107

    Article  CAS  Google Scholar 

  19. Bruno L, Pijolat C, Lalauze R (1994) Tin dioxide thin film gas sensor prepared by chemical vapor deposition—influence of grain size and thickness on the electrical properties. Sens Actuators B 18:195–199

    Article  CAS  Google Scholar 

  20. Kim KH, Park CG (1991) Electrical properties and gas sensing behavior of SnO2 films prepared by chemical vapor deposition. J Electrochem Soc 138:2408–2412

    Article  CAS  Google Scholar 

  21. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Ann Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  22. Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000

    Article  CAS  Google Scholar 

  23. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656

    Article  CAS  Google Scholar 

  24. Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871

    Article  CAS  Google Scholar 

  25. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  CAS  Google Scholar 

  26. Kong J, Franklin NR, Zhou CW, Chapline MJ, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  Google Scholar 

  27. Chen YJ, Zhu CL, Wang TH (2006) The enhanced ethanol sensing properties of multiwalled carbon nanotubes/SnO2 Core/shell nanostructures. Nanotechnology 17:3012–3017

    Article  CAS  Google Scholar 

  28. Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34(19):R125–R149

    Article  CAS  Google Scholar 

  29. Huang H, Lee YC, Tan OK, Zhou W, Peng N, Zhang Q (2009) High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology 20:115501 (5pp)

    Article  Google Scholar 

  30. Francioso L, Taurino AM, Forleo A, Siciliano P (2008) TiO2 nanowires array fabrication and gas sensing properties. Sens Actuators B 130(1):70–76

    Article  Google Scholar 

  31. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly-sensitive, selective and integrated detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  Google Scholar 

  32. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly order nanowire array on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384

    Article  CAS  Google Scholar 

  33. Eliol OH, Morisette D, Akin D, Denton JP, Bashir R (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(11):4613–4615

    Article  Google Scholar 

  34. Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Letter 4(4):665–670

    Article  CAS  Google Scholar 

  35. Adeghian RB, Kahrizi M (2007) A novel miniature gas ionization sensor based on freestanding gold nanowires. Sens Actuators A 137(2):248–255

    Article  Google Scholar 

  36. Liu Z, Searson PC (2006) Single nanoporous gold nanowire sensors. J Phys Chem B 110(9):4318–4322

    Article  CAS  Google Scholar 

  37. Im Y, Lee C, Vasquez RP, Bangar MA, Myung NV, Menke EJ, Penner RM, Yun M (2006) Investigation of a single Pd nanowire for use as a hydrogen sensor. Small 2(3):356–358

    Article  CAS  Google Scholar 

  38. Walter EC, Favier F, Penner RM (2002) Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal Chem 74:1546–1553

    Article  CAS  Google Scholar 

  39. Atashbar MZ, Singamaneni S (2005) Room temperature gas sensor based on metallic nanowires. Sens Actuators B 111–112(11):13–21

    Article  Google Scholar 

  40. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293(5538):2227–2231

    Article  CAS  Google Scholar 

  41. Dan YP, Cao YY, Mallouk TE, Johnson AT, Evoy S (2007) Dielectrophoretically assembled polymer nanowires for gas sensing. Sens Actuators B 125(1):55–59

    Article  Google Scholar 

  42. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315

    Article  CAS  Google Scholar 

  43. George SM, Ott AW, Klaus JW (1996) Surface chemistry for atomic layer growth. J Phys Chem 100(31):13121–13131

    Article  CAS  Google Scholar 

  44. Goodman CHL, Pessa MV (1986) Atomic layer epitaxy. J Appl Phys 60(3):R65–R81

    Article  CAS  Google Scholar 

  45. Suntola T (1992) Atomic layer epitaxy. Thin Solid Films 216(1):84–89

    Article  CAS  Google Scholar 

  46. Suntola T (1994) Atomic Layer Epitaxy. In Hurle DTJ (ed) Handbook of Crystal Growth, Part B: Growth Mechanisms and Dynamics, Vol. 3. Elsevier, Amsterdam (Chapter 14)

    Google Scholar 

  47. Leskela M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146

    Article  CAS  Google Scholar 

  48. Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97(1–52):121301

    Article  Google Scholar 

  49. Ritala M, Leskela M (2001) Atomic layer deposition. In: Handbook of thin film materials, Vol 1, Elsevier, San Diego (Chapter 2)

    Google Scholar 

  50. Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15(18):3507–3517

    Article  CAS  Google Scholar 

  51. Kucheyev SO, Biener J, Wang YM, Baumann TF, Wu KJ, Buuren TV, Hamza AV, Satcher JH (2005) Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl Phys Lett, Vol 86(8):083108(1–3)

    Google Scholar 

  52. Ritala M, Leskela M (1999) Atomic layer epitaxy-a valuable tool for nanotechnology? Nanotechnology 10(1):19–24

    Article  CAS  Google Scholar 

  53. Lu W, Lieber CM (2006) Semiconductor Nanowires. J Phys D Appl Phys 39(21):R387–R406

    Article  CAS  Google Scholar 

  54. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  CAS  Google Scholar 

  55. Wolf ED (2004) Nanophysics and nanotechnology: an introduction to modern concepts in nanosciences. Wiley-VCH, Weinheim

    Google Scholar 

  56. Shin H, Jeong DK, Lee J, Sung MM, Kim J (2004) Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater 16(14):1197–1200

    Article  CAS  Google Scholar 

  57. Hwang J, Min B, Lee JS, Keem K, Cho K, Sung M-Y, Lee M-S, Kim S (2004) Al2O3 nanotubes fabricated by wet etching of ZnO/Al2O3 core/shell nanofibers. Adv Mater 16(5):422–425

    Article  CAS  Google Scholar 

  58. Peng Q, Sun XY, Spagnola JC, Hyde GK, Spontak RJ, Parsons GN (2007) Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett 7(3):719–722

    Article  CAS  Google Scholar 

  59. Ras RHA, Kemell M, Wit JD, Ritala M, Brinke GT, Leskela M, Ikkala O (2007) Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates. Adv Mater 19:102–106

    Article  CAS  Google Scholar 

  60. Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15(18):3507–3517

    Article  CAS  Google Scholar 

  61. Sander MS, Côté MJ, Gu W, Kile BM, Tripp CP (2004) Template-assisted fabrication of dense, aligned arrays of Titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16(22):2052–2057

    Article  CAS  Google Scholar 

  62. Gu DF, Baumgart H, Namkoong G, Abdel-Fattah TM (2009) Atomic layer deposition of ZrO2 and HfO2 nanotubes by template replication. Electrochem Solid-State Lett 12(4):K25–K28

    Article  CAS  Google Scholar 

  63. Kim WH, Park SJ, Son JY, Kim HJ (2008) Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition. Nanotechnology, 19:045302 (8pp)

    Google Scholar 

  64. Elam JW, Xiong G, Han CY, Wang HH, Birrell JP, Welp U, Hryn JN, Pellin MJ, Baumann TF, Poco JF, Satcher JH Jr (2006) Atomic layer deposition for the conformal coating of nanoporous materials. J Nanomaterials (1), p 1–5 (Article ID 64501)

    Google Scholar 

  65. Willinger MG, Neri G, Rauwel E, Bonavita A, Micali G, Pinna N (2008) Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process. Nano Lett 8(12):4201–4204

    Article  CAS  Google Scholar 

  66. Kim WS, Lee BS, Kim DH, Kim HC, Yu WR, Hong SH (2010) SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology, 21:245605(1–7)

    Google Scholar 

  67. Bae CD, Yoon YJ, Yoo HJ, Han D, Cho JH, Lee BH, Sung MM, Lee MG, Kim JY, Shin HJ (2009) Controlled fabrication of multiwall anatase TiO2 nanotubular architectures. Chem Mater 21(13):2574–2576

    Article  CAS  Google Scholar 

  68. Du X, Du Y, George SM (2008) CO gas sensing by ultrathin tin oxide films grown by atomic layer deposition using transmission FTIR spectroscopy. J Phys Chem A 112:9211–9219

    Article  CAS  Google Scholar 

  69. Du X, George SM (2008) Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens Actuators B 135:152–160

    Article  Google Scholar 

  70. Utriainen M, Varpula A, Niskanen AJ, Sinkkonen J, Novikov S, Airaksinen VM, Einehag M, Johansson D, Nyholm S (2008) Novel hand-held chemical detector with micro gas sensors. Nordic innovation centre (NICe) project number: 06071. Online: http://www.nordicinnovation.net/_img/06071_treatgarden_final_technical_report_web.pdf

  71. Niskanena AJ, Varpula A, Utriainen M, Natarajan G, Cameron DC, Novikov S, Airaksinen VM, Sinkkonen J, Franssil S (2010) Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors. Sens Actuators B Chem 148(1):227–232

    Article  Google Scholar 

  72. Natarajan G, Cameron DC (2009) Influence of oxygen depletion layer on the properties of tin oxide gas-sensing films fabricated by atomic layer deposition. Appl Phys A Mater Sci Process 95(3):621–627

    Article  CAS  Google Scholar 

  73. Kim DH, Kim WS, Lee SB, Hong SH (2010) Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sens Actuators B 147(2):653–659

    Article  Google Scholar 

  74. Lee W, Hong K, Park Y, Kim NH, Choi Y, Park J (2005) Surface and sensing properties of PE-ALD SnO2 thin film. Electron Lett 41(8):475–477

    Article  CAS  Google Scholar 

  75. Ra YW, Choi KS, Kim JH, Hahn YB, Im HY (2008) Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. Small 4(8):1105–1109

    Article  CAS  Google Scholar 

  76. Ra H-W, Khan R, Kim JT, Kang BR, Im YH (2009) The effect of grain boundaries inside the individual ZnO nanowires in gas sensing. Nanotechnology 21(8):085502(1–5)

    Google Scholar 

  77. Aronniemi M, Saino J, Lahtinen J (2008) Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition. Thin Solid Films 516(18):6110–6115

    Article  CAS  Google Scholar 

  78. Kolmakov A, Klenov DO, Lilach Y, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Letter 5(4):667–673

    Article  CAS  Google Scholar 

  79. Joshi RK, Kruis FE (2006) Influence of Ag particle size on ethanol sensing of SnO1.8:Ag nanoparticle films: a method to develop parts per billion level gas sensors. Appl Phys Lett 89:153116(1–3)

    Google Scholar 

  80. Johansson A, Törndahl T, Ottosson LM, Boman M, Carlsson JO (2003) Copper nanoparticles deposited inside the pores of anodized aluminum oxide using atomic layer deposition. J Mater Sci Eng C23(6–8):823–826

    CAS  Google Scholar 

  81. Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754

    Article  CAS  Google Scholar 

  82. Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC (2009) Catalytic Nanoliths. Chem Eng Sci 64:560–567

    Article  CAS  Google Scholar 

  83. Pellin MJ, Stair PC, Xiong G, Elam JW, Birrell J, Curtiss L, George SM, Han CY, Iton L, Kung H, Kung M, Wang HH (2005) Mesoporous catalytic membranes: synthetic control of pore size and wall composition. Catal Lett 102(3–4):127–130

    Article  CAS  Google Scholar 

  84. Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapo P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Du, X. (2013). Atomic Layer Deposition for Metal Oxide Nanomaterials. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_7

Download citation

Publish with us

Policies and ethics