Skip to main content

Selective Crystal Structure Synthesis and Sensing Dependencies

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Chemo-resistive sensors utilizing meal oxides form a very important type of sensors for gas detection. They are based on the interaction between gas molecules and surface ionosorbed oxygen species accompanied by electron transfer, which eventually leads to the change of material resistance. This process is controlled by a few external parameters (working temperature) and internal parameters (microstructure, chemical composition and crystal structure). While most parameters have been paid sufficient attention to, the influence of crystal structures is still largely unexplored. On the other hand, metal oxides exist in more than one crystalline form. The structural and property difference between different structures is expected to affect the sensing behavior of the material. Taking TiO2 and WO3 as examples, this chapter reviews how to selectively synthesize desired crystal structures and how they are related to the performance as agas sensor. TiO2 exists in two major polymorphs, with rutile being the thermodynamically stable phase and anatase being the metastable one. Compared to rutile, anatase is more open-structured and more chemically active and has lower surface energy. The hydrothermal method has been proved to be very effective in anatase synthesis as long as particle size is well controlled (normally under 20 nm) and dopants could stabilize this phase. Studies have found that anatase shows higher sensitivity as a gas sensor which is believed to be attributed to its higher chemical activity.WO3 undergoes a series of phase transition when it is cooled down and γ-WO3 is usually the room-temperature (RT) stable phase. The low-temperature stable phase, ε-WO3, is the least symmetric among all the phases and is the only one with a ferroelectric feature. By a rapid solidification method called flame spray pyrolysis, ε-WO3 is able to be synthesized in high purity at RT. Doping with silicon and chromium could effectively stabilize this phase up to 500 °C by forming boundary domains or surface layers. The dopant-stabilized ε-WO3 shows high sensitivity and unique selectivity to polar gas molecules, esp. acetone, which may be due to the strong interaction between the ε-WO3 surface dipole and polar molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bielanski A, Deren J, Haber J (1957) Electric conductivity and catalytic activity of semiconducting oxide catalysts. Nature 179(4561):668–679. doi:10.1038/179668a0

    Article  CAS  Google Scholar 

  2. Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34(11):1502–1503. doi:10.1021/ac60191a001

    Article  CAS  Google Scholar 

  3. Korotcenkov G (2007) Metal oxides for solid-state gas sensorsgas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23. doi: 10.1016/j.mseb.2007.01.044

  4. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568(1–2):28–40. doi:10.1016/j.aca.2005.10.069

    Article  CAS  Google Scholar 

  5. Krivetskiy VV, Ponzoni A, Comini E, Badalyan SM, Rumyantseva MN, Gaskov AM (2010) Materials based on modified SnO2 for selective gas sensors. Inorg Mater 46(10):1100–1105. doi:10.1134/S0020168510100134

    Article  CAS  Google Scholar 

  6. Schierbaum KD, Weimar U, Gopel W, Kowalkowski R (1991) Conductance, work function and catalytic activity of SnO2-based gas sensors. Sens Actuators B Chem 3(3):205–214. doi: 10.1016/0925-4005(91)80007-7

  7. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50. doi:10.1002/smll.200500261

    Article  CAS  Google Scholar 

  8. Huang XJ, Choi YK (2007) Chemical sensors based on nanostructured materials. Sens Actuators B Chem 122(2):659–671. doi: 10.1016/j.snb.2006.06.022

    Google Scholar 

  9. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54(1):1–67. doi:10.1016/j.pmatsci.2008.06.003

    Article  CAS  Google Scholar 

  10. Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13(30):8376–8388. doi:10.1002/chem.200700927

    Article  CAS  Google Scholar 

  11. Woodward PM, Sleight AW, Vogt T (1997) Ferroelectric tungsten trioxide. J Solid State Chem 131(1):9–17. doi:10.1006/jssc.1997.7268

    Article  CAS  Google Scholar 

  12. Gerand B, Nowogrocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29(3):429–434. doi:10.1016/0022-4596(79)90199-3

    Article  CAS  Google Scholar 

  13. Ashrafi A, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102(7):071101. doi:10.1063/1.2787957

    Article  Google Scholar 

  14. Gouma PI, Prasad AK, Iyer KK (2006) Selective nanoprobes for ‘signalling gases’. Nanotechnology 17(4):S48–S53. doi:10.1088/0957-4484/17/4/008

    Article  CAS  Google Scholar 

  15. Wold A (1993) Photocatalytic properties of TiO2. Chem Mater 5(3):280–283. doi:10.1021/cm00027a008

    Article  CAS  Google Scholar 

  16. Park NG, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104(38):8989–8994. doi:10.1021/jp994365l

    Article  CAS  Google Scholar 

  17. Zaban A, Aruna ST, Tirosh S, Gregg BA, Mastai Y (2000) The effect of the preparation condition of TiO2 colloids on their surface structures. J Phys Chem B 104(17):4130–4133. doi:10.1021/jp993198m

    Article  CAS  Google Scholar 

  18. Wang CC, Ying JY (1999) Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11(11):3113–3120. doi:10.1021/cm990180f

    Article  CAS  Google Scholar 

  19. Shimizu K, Imai H, Hirashima H, Tsukuma K (1999) Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 351(1–2):220–224. doi:10.1016/S0040-6090(99)00084-X

    Article  CAS  Google Scholar 

  20. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605. doi:10.1088/0957-4484/19/14/145605

    Article  CAS  Google Scholar 

  21. Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006) A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew Chem Int Ed 45(15):2378–2381. doi:10.1002/anie.200503565

    Article  CAS  Google Scholar 

  22. Bosc F, Ayral A, Albouy PA, Guizard C (2003) A simple route for low-temperature synthesis of mesoporous and nanocrystalline anatase thin films. Chem Mater 15(12):2463–2468. doi:10.1021/Cm031025a

    Article  CAS  Google Scholar 

  23. Wang CX, Yin LW, Zhang LY, Qi YX, Lun N, Liu NN (2010) Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 26(15):12841–12848. doi:10.1021/La100910u

    Article  CAS  Google Scholar 

  24. Nian JN, Teng HS (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110(9):4193–4198. doi:10.1021/Jp0567321

    Article  CAS  Google Scholar 

  25. Peng TY, Zhao D, Dai K, Shi W, Hirao K (2005) Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J Phys Chem B 109(11):4947–4952. doi:10.1021/Jp044771r

    Article  CAS  Google Scholar 

  26. Zhang XY, Yao BD, Zhao LX, Liang CH, Zhang LD, Mao YQ (2001) Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. J Electrochem Soc 148(7):G398–G400. doi:10.1149/1.1378293

    Article  CAS  Google Scholar 

  27. Huang WP, Tang XH, Wang YQ, Koltypin Y, Gedanken A (2000) Selective synthesis of anatase and rutile via ultrasound irradiation. Chem Commun 15:1415–1416. doi:10.1039/B003349I

    Article  Google Scholar 

  28. Zhang HZ, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8(9):2073–2076. doi:10.1039/A802619J

    Article  CAS  Google Scholar 

  29. Navrotsky A (2003) Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem Trans 4:34–37. doi:10.1039/b308711e

    Article  Google Scholar 

  30. Cassaignon S, Koelsch M, Jolivet JP (2007) Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid. J Mater Sci 42(16):6689–6695. doi:10.1007/s10853-007-1496-y

    Article  CAS  Google Scholar 

  31. Zhao JL, Wang XH, Sun TY, Li LT (2005) In situ templated synthesis of anatase single-crystal nanotube arrays. Nanotechnology 16(10):2450–2454. doi:10.1088/0957-4484/16/10/077

    Article  CAS  Google Scholar 

  32. Goossens A, Maloney EL, Schoonman J (1998) Gas-phase synthesis of nanostructured anatase TiO2. Chem Vap Deposition 4(3):109–114. doi:10.1002/(SICI)1521-3862(199805)04:03<109:AID-CVDE109>3.0.CO;2-U

    Article  CAS  Google Scholar 

  33. Gouma PI, Dutta PK, Mills MJ (1999) Structural stability of titania thin films. Nanostruct Mater 11(8):1231–1237. doi:10.1016/S0965-9773(99)00413-4

    Article  CAS  Google Scholar 

  34. Gouma PI, Mills MJ (2001) Anatase-to-rutile transformation in titania powders. J Am Ceram Soc 84(3):619–622. doi:10.1111/j.1151-2916.2001.tb00709.x

    Article  CAS  Google Scholar 

  35. Arbiol J, Cerda J, Dezanneau G, Cirera A, Peiro F, Cornet A, Morante JR (2002) Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J Appl Phys 92(2):853–861. doi:10.1063/1.1487915

    Article  CAS  Google Scholar 

  36. Anukunprasert T, Saiwan C, Traversa E (2005) The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2. Sci Technol Adv Mater 6(3–4):359–363. doi:10.1016/j.stam.2005.02.020

    Article  CAS  Google Scholar 

  37. de Farias RF, Airoldi C (2005) A study about the stabilization of anatase phase at high temperatures on sol-gel cerium and copper doped titania and titania-silica powders. J Non-Cryst Solids 351(1):84–88. doi:10.1016/j.jnoncrysol.2004.09.015

    Article  Google Scholar 

  38. Perera S, Gillan EG (2005) High-temperature stabilized anatase TiO2 from an aluminum-doped TiCl3 precursor. Chem Commun 48:5988–5990. doi:10.1039/B512148e

    Article  Google Scholar 

  39. Tien TY, Stadler HL, Gibbons EF, Zacmanidis PJ (1975) TiO2 as an air-to-fuel ratio sensor for automobile exhausts. Am Ceram Soc Bull 54(3):280–285

    CAS  Google Scholar 

  40. Devi GS, Hyodo T, Shimizu Y, Egashira M (2002) Synthesis of mesoporous TiO2-based powders and their gas-sensing properties. Sens Actuators B Chem 87(1):122–129. doi: 10.1016/S0925-4005(02)00228-9

  41. Birkefeld LD, Azad AM, Akbar SA (1992) Carbon-monoxide and hydrogen detection by anatase modification of titanium-dioxide. J Am Ceram Soc 75(11):2964–2968. doi:10.1111/j.1151-2916.1992.tb04372.x

    Article  CAS  Google Scholar 

  42. Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2003) Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens Actuators B Chem 93(1–3):509–518. doi: 10.1016/S0925-4005(03)000183-7

  43. Garzella C, Comini E, Tempesti E, Frigeri C, Sberveglieri G (2000) TiO2 thin films by a novel sol-gel processing for gas sensor applications. Sens Actuators B Chem 68(1–3):189–196. doi: 10.1016/S0925-4005(00)00428-7

  44. Teleki A, Bjelobrk N, Pratsinis SE (2008) Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol. Sens Actuators B Chem 130(1):449–457. doi: 10.1016/j.snb.2007.09.008

  45. Lu HF, Li F, Liu G, Chen ZG, Wang DW, Fang HT, Lu GQ, Jiang ZH, Cheng HM (2008) Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology 19(40). doi: 10.1088/0957-4484/19/40/405504

  46. Francioso L, Taurino AM, Forleo A, Siciliano P (2008) TiO2 nanowires array fabrication and gas sensing properties. Sens Actuators B Chem 130(1):70–76. doi: 10.1016/j.snb.2007.07.074

    Google Scholar 

  47. Chatten R, Chadwick AV, Rougier A, Lindan PJD (2005) The oxygen vacancy in crystal phases of WO3. J Phys Chem B 109(8):3146–3156. doi:10.1021/Jp045655r

    Article  CAS  Google Scholar 

  48. Salje E, Viswanathan K (1975) Physical-properties and phase-transitions in WO3. Acta Crystallogr Sect A Found Crystallogr A31(May1):356–359. doi: 10.1107/S0567739475000745

  49. Matthias BT, Wood EA (1951) Low temperature polymorphic transformation in WO3. Phys Rev 84(6):1255. doi:10.1103/PhysRev.84.1255

    Article  CAS  Google Scholar 

  50. Salje EKH, Rehmann S, Pobell F, Morris D, Knight KS, Herrmannsdorfer T, Dove MT (1997) Crystal structure and paramagnetic behaviour of -WO3-x. J Phys Condens Matter 9(31):6563–6577. doi: 10.1088/0953-8984/9/31/010

    Google Scholar 

  51. Arai M, Hayashi S, Yamamoto K, Kim SS (1990) Raman studies of phase transitions in gas-evaporated WO3 microcrystals. Solid State Commun 75(7):613–616. doi:10.1016/0038-1098(90)90429-F

    Article  CAS  Google Scholar 

  52. Hayashi S, Sugano H, Arai H, Yamamoto K (1992) Phase transitions in gas evaporated WO3 microcrystals: a Raman study. J Phys Soc Jpn 61(3):916–923. doi:10.1016/0038-1098(90)90429-F

    Article  CAS  Google Scholar 

  53. Cazzanelli E, Vinegoni C, Mariotto G, Kuzmin A, Purans J (1999) Low-temperature polymorphism in tungsten trioxide powders and its dependence on mechanical treatments. J Solid State Chem 143(1):24–32. doi:10.1006/jssc.1998.8061

    Article  CAS  Google Scholar 

  54. Souza AG, Mendes J, Freire VN, Ayala AP, Sasaki JM, Freire PTC, Melo FEA, Juliao JF, Gomes UU (2001) Phase transition in WO3 in microcrystals obtained by sintering process. J Raman Spectrosc 32(8):695–699. doi:10.1002/jrs.727

    Article  Google Scholar 

  55. Khatko V, Guirado F, Hubalek J, Llobet E, Correig X (2005) X-ray investigations of nanopowder WO3 thick films. Phys Status Solidi A-Appl Mat 202(10):1973–1979. doi:10.1002/pssa.200520071

    Article  CAS  Google Scholar 

  56. Wang L, Teleki A, Pratsinis SE, Gouma PI (2008) Ferroelectric WO3 nanoparticles for acetone selective detection. Chem Mater 20(15):4794–4796. doi:10.1021/Cm800761e

    Article  CAS  Google Scholar 

  57. Madler L, Stark WJ, Pratsinis SE (2002) Flame-made ceria nanoparticles. J Mater Res 17(6):1356–1362. doi:10.1557/JMR.2002.0202

    Article  CAS  Google Scholar 

  58. Righettoni M, Tricoli A, Pratsinis SE (2010) Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem Mater 22(10):3152–3157. doi:10.1021/Cm1001576

    Article  CAS  Google Scholar 

  59. Boulova M, Rosman N, Bouvier P, Lucazeau G (2002) High-pressure Raman study of microcrystalline WO3 tungsten oxide. J Phys Condens Matter 14(23):5849–5863. doi: 10.1088/0953-8984/14/23/314

    Google Scholar 

  60. Mahan AH, Parilla PA, Jones KM, Dillon AC (2005) Hot-wire chemical vapor deposition of crystalline tungsten oxide nanoparticles at high density. Chem Phys Lett 413(1–3):88–94. doi:10.1016/j.cplett.2005.07.037

    Article  CAS  Google Scholar 

  61. Baserga A, Russo V, Di Fonzo F, Bailini A, Cattaneo D, Casari CS, Bassi AL, Bottani CE (2007) Nanostructured tungsten oxide with controlled properties: synthesis and Raman characterization. Thin Solid Films 515(16):6465–6469. doi:10.1016/j.tsf.2006.11.067

    Article  CAS  Google Scholar 

  62. Srivastava AK, Agnihotry SA, Deepa M (2006) Sol-gel derived tungsten oxide films with pseudocubic triclinic nanorods and nanoparticles. Thin Solid Films 515(4):1419–1423. doi:10.1016/j.tsf.2006.03.055

    Article  CAS  Google Scholar 

  63. Supothina S, Seeharaj P, Yoriya S, Sriyudthsak M (2007) Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram Int 33(6):931–936. doi:10.1016/j.ceramint.2006.02.007

    Article  CAS  Google Scholar 

  64. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem Rev 96(8):3327–3349. doi:10.1021/cr940044o

    Article  CAS  Google Scholar 

  65. Vemury S, Pratsinis SE (1995) Dopants in flame synthesis of titania. J Am Ceram Soc 78(11):2984–2992. doi:10.1111/j.1151-2916.1995.tb09074.x

    Article  CAS  Google Scholar 

  66. Shaver PJ (1967) Activated tungsten oxide gas detectors. Appl Phys Lett 11(8):255–257. doi:10.1063/1.1755123

    Article  CAS  Google Scholar 

  67. Akiyama M, Tamaki J, Miura N, Yamazoe N (1991) Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chem Lett 9:1611–1614

    Article  Google Scholar 

  68. Gouma PI, Kalyanasundaram K (2008) A selective nanosensing probe for nitric oxide. Appl Phys Lett 93(24):244102. doi:10.1063/1.3050524

    Article  Google Scholar 

  69. Xie GZ, Yu JS, Chen X, Jiang YD (2007) Gas sensing characteristics of WO3 vacuum deposited thin films. Sens Actuators B Chem 123(2):909–914. doi: 10.1016/j.snb.2006.10.059

    Google Scholar 

  70. Ashraf S, Blackman CS, Palgrave RG, Naisbitt SC, Parkin IP (2007) Aerosol assisted chemical vapour deposition of WO3 thin films from tungsten hexacarbonyl and their gas sensing properties. J Mater Chem 17(35):3708–3713. doi:10.1039/B705166B

    Article  CAS  Google Scholar 

  71. Piperno S, Passacantando M, Santucci S, Lozzi L, La Rosa S (2007) WO3 nanofibers for gas sensing applications. J Appl Phys 101(12):124504. doi:10.1063/1.2748627

    Article  Google Scholar 

  72. Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng SZ, Xu NS, Ding Y, Wang ZL (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88(20):203101. doi:10.1063/1.2203932

    Article  Google Scholar 

  73. Rossinyol E, Prim A, Pellicer E, Rodriguez J, Peiro F, Cornet A, Morante JR, Tian BZ, Bo T, Zhao DY (2007) Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection. Sens Actuators B Chem 126(1):18–23. doi: 10.1016/j.snb.2006.10.017

    Google Scholar 

  74. Penza M, Martucci C, Cassano G (1998) NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, AuAu) layers. Sens Actuators B Chem 50(1):52–59. doi: 10.1016/S0925-4005(98)00156-7

    Google Scholar 

  75. Ivanov P, Llobet E, Blanco F, Vergara A, Vilanova X, Gracia I, Cane C, Correig X (2006) On the effects of the materials and the noble metal additives to NO2 detection. Sens Actuators B Chem 118(1–2):311–317. doi: 10.1016/j.snb.2006.04.036

  76. Su PG, Wu RJ, Nieh FP (2003) Detection of nitrogen dioxide using mixed tungsten oxide-based thick film semiconductor sensor. Talanta 59(4):667–672. doi:10.1016/S0039-9140(02)00582-9

    Article  CAS  Google Scholar 

  77. Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernandez-Ramirez F, Peiro F, Cornet A, Morante JR, Solovyov LA, Tian BZ, Bo T, Zhao DY (2007) Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications. Adv Funct Mater 17(11):1801–1806. doi:10.1002/adfm.200600722

    Article  CAS  Google Scholar 

  78. Gillet M, Aguir K, Bendahan M, Mennini P (2005) Grain size effect in sputtered tungsten trioxide thin films on the sensitivity to ozone. Thin Solid Films 484(1–2):358–363. doi:10.1016/j.tsf.2005.02.035

    Article  CAS  Google Scholar 

  79. Labidi A, Gillet E, Delamare R, Maaref M, Aguir K (2006) Ethanol and ozone sensing characteristics of WO3 based sensors activated by AuAu and Pd. Sens Actuators B Chem 120(1):338–345. doi: 10.1016/j.snb.2006.02.015

    Google Scholar 

  80. Korotcenkov G, Blinov I, Ivanov M, Stetter JR (2007) Ozone sensors on the base of SnO2 films deposited by spray pyrolysis. Sens Actuators B Chem 120(2):679–686. doi: 10.1016/j.snb.2006.03.029

  81. Vallejos S, Khatko V, Aguir K, Ngo KA, Calderer J, Gracia I, Cane C, Llobet E, Correig X (2007) Ozone monitoring by micro-machined sensors with WO3 sensing films. Sens Actuators B Chem 126(2):573–578. doi: 10.1016/j.snb.2007.04.012

    Google Scholar 

  82. Barrett EPS, Georgiades GC, Sermon PA (1990) The mechanism of operation of WO3-based H2S sensors. Sens Actuators B Chem 1(1–6):116–120. doi: 10.1016/0925-4005(90)80184-2

  83. Ionescu R, Hoel A, Granqvist CG, Llobet E, Heszler P (2005) Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors. Sens Actuators B Chem 104(1):132–139. doi: 10.1016/j.snb.2004.05.015

  84. Rout CS, Hegde M, Rao CNR (2008) H2S sensors based on tungsten oxide nanostructures. Sens Actuators B Chem 128(2):488–493. doi: 10.1016/j.snb.2007.07.013

    Google Scholar 

  85. Geng LN, Huang XL, Zhao YQ, Li P, Wang SR, Zhang SM, Wu SH (2006) H2S sensitivity study of polypyrrole/WO3 materials. Solid-State Electron 50(5):723–726. doi:10.1016/j.sse.2006.04.024

    Article  CAS  Google Scholar 

  86. Llobet E, Molas G, Molinas P, Calderer J, Vilanova X, Brezmes J, Sueiras JE, Correig X (2000) Fabrication of highly selective tungsten oxide ammonia sensors. J Electrochem Soc 147(2):776–779. doi:10.1149/1.1393270

    Article  CAS  Google Scholar 

  87. Xu CN, Miura N, Ishida Y, Matsuda K, Yamazoe N (2000) Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element. Sens Actuators B Chem 65(1–3):163–165. doi: 10.1016/S0925-4005(99)00413-X

  88. Kanda K, Maekawa T (2005) Development of a WO3 thick-film-based sensor for the detection of VOC. Sens Actuators B Chem 108(1–2):97–101. doi: 10.1016/j.snb.2005.01.038

  89. Hubalek J, Malysz K, Prasek J, Vilanova X, Ivanov P, Llobet E, Brezmes J, Correig X, Sverak Z (2004) Pt-loaded Al2O3 catalytic filters for screen-printed WO3 sensors highly selective to benzene. Sens Actuators B Chem 101(3):277–283. doi: 10.1016/j.snb.2004.01.015

    Google Scholar 

  90. Khadayate RS, Sali V, Patil PP (2007) Acetone vapor sensing properties of screen printed WO3 thick films. Talanta 72(3):1077–1081. doi:10.1016/j.talanta.2006.12.043

    Article  CAS  Google Scholar 

  91. Jimenez I, Centeno MA, Scotti R, Morazzoni F, Arbiol J, Cornet A, Morante JR (2004) NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas sensing applications. J Mater Chem 14(15):2412–2420. doi:10.1039/B400872C

    Article  CAS  Google Scholar 

  92. Garrity K, Kolpak AM, Ismail-Beigi S, Altman EI (2010) Chemistry of ferroelectric surfaces. Adv Mater 22(26–27):2969–2973. doi:10.1002/adma.200903723

    Article  CAS  Google Scholar 

  93. Tani E, Yoshimura M, Somiya S (1983) Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions. J Am Ceram Soc 66(1):11–14. doi:10.1111/j.1151-2916.1983.tb09958.x

    Article  CAS  Google Scholar 

  94. Jossen R, Heine MC, Pratsinis SE, Akhtar MK (2006) Thermal stability of flame-made zirconia-based mixed oxides. Chem Vap Deposition 12(10):614–619. doi:10.1002/cvde.200506380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perena Gouma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, L., Gouma, P. (2013). Selective Crystal Structure Synthesis and Sensing Dependencies. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_5

Download citation

Publish with us

Policies and ethics