Skip to main content

Combinatorial Approaches for Synthesis of Metal Oxides: Processing and Sensing Application

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 2776 Accesses

Abstract

This chapter gives an overview about the application of metal oxides in chemiresistors. A generalized model of working principle and the influence of particle size, microstructure, volume and surface doping are discussed. The quality factors of sensor performance and the necessity of high-throughput experimentation and combinatorial techniques for the development of new sensor materials are explained. In this context high-throughput impedance spectroscopy is presented as a rapid characterization method of a large number of samples. The complete workflow is introduced involving material synthesis and analysis, layer preparation by a laboratory robot, impedometric characterization and automated data evaluation. As examples two series of surface and volume doping demonstrate the systematic identification of new sensor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debéda H, Rebière D, Pistré J, Ménil J (1995) Thick film pellistor array with a neutral network post-treatment. Sens Actuat B 27:297–300

    Google Scholar 

  2. Brailsford AD, Yussouff M, Logothetis EM (1992) Technical digest of the 4th international meeting on chemical sensors. In: Yamazoe N (ed), Japan association of chemical sensors, Tokyo

    Google Scholar 

  3. Ostrik B, Fleischer M, Meixner H, Kohl D (2000) Investigation of the reaction mechanism in work function type sensors at room temperature by studies of the cross-sensitivity to oxygen and water: the carbonate-carbon dioxide system. Sens Actuat B 68:197–202

    Google Scholar 

  4. Lucklum R, Hauptmann P (2000) The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification. Sens Actuat B 70:30–36

    Google Scholar 

  5. Chang SM, Kim YH, Kim JM, Chang YK, Kim JD (1995) Development of environmental monitoring sensor using quartz crystal micro-balance. Mol Cryst Liq Cryst 267:405–410

    CAS  Google Scholar 

  6. Schramm U, Meinhold D, Winter S, Heil C, Müller-Albrecht J, Wachter L, Hoff H, Roesky CEO, Rechenbach T, Boeker P, Lammers PS, Weber E, Bargon J (2000) A QMB-based temperature-modulated ammonia sensor for humid air. Sens Actuat B 67(3):219–226

    Google Scholar 

  7. Stetter JR, Li J (2008) Amperometric gas sensors—a review. Chem Rev 108:352–366

    CAS  Google Scholar 

  8. Pasierb P, Rekas R (2009) Solid-state potentiometric gas sensors—current status and future trends. J Solid State Electrochem 13(1):3–25

    CAS  Google Scholar 

  9. Bârsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuat B 121(1):18–35

    Google Scholar 

  10. Moos R, Sahner K, Fleischer M, Guth U, Bârsan N, Weimar U (2009) Solid state gas sensor research in Germany—a status report. Sensors 9:4323–4365

    CAS  Google Scholar 

  11. Brattain WH, Bardeen J (1953) Surface properties of germanium. Bell Syst Technol J 32:1–41

    Google Scholar 

  12. Heiland G (1954) Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen. Z Phys 138(3–4):459–464

    CAS  Google Scholar 

  13. Heiland G (1957) Zum Einfluß von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen. Z Phys 148(1):15–27

    CAS  Google Scholar 

  14. Seiyama T, Kato A, Fujiishi K, Nagatami M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34(11):1502–1503

    CAS  Google Scholar 

  15. Seiyama T, Kagawa S (1966) Detector for gaseous components with semiconductive thin films. Anal Chem 38:1069–1073

    CAS  Google Scholar 

  16. Taguchi N (1962) Jpn. Pat. 45-38200 1962, Jpn Pat 47-38840, US Patent 3644795 1962

    Google Scholar 

  17. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated sensors—a comprehensive review. Crit Sol State Mater Sci 29:111–188

    CAS  Google Scholar 

  18. Choi KJ, Jang HW (2010) One-dimensional oxide nanostructures as gas-sensing materials: review and issue. Sensors 10:4083–4099

    CAS  Google Scholar 

  19. Lang O, Pettenkofer C, Sánchez-Royo JF, Segura A, Klein A, Jaegermann W (1999) Thin film growth and band lineup of In2O3 on the layered semiconductor InSe. J Appl Phys 86(10):5687–5691

    CAS  Google Scholar 

  20. Manno D, Micocci G, Serra A, Di Guilo M, Tepore A (2000) Structural and electrical properties of In2O3-SeO2 mixed oxide thin films for gas sensing applications. J Appl Phys 88(11):6571–6577

    CAS  Google Scholar 

  21. Epifani M, Capone S, Rella R, Siciliano P, Vasanelli L (2003) In2O3 thin films obtained through a chemical complexation based sol-gel process and their application as gas sensor devices. J Sol-Gel Sci Technol 26(1–3):741–744

    CAS  Google Scholar 

  22. Korotcenkov G, Brinzani V, Cerneavschi A, Ivanov M, Cornet A, Morante J, Cabot A, Arbiol J (2004) In2O3 films deposited by spray pyrolysis: gas response to reducing (CO, H2) gases. Sens Actuat B 98(2–3):122–129

    Google Scholar 

  23. Belyesheva TV, Kazachkov EA, Gutman EE (2001) Gas sensing properties of In2O3 and Au-doped In2O3 films for detecting carbon monoxide in Air. J Anal Chem 56(7):676–678

    Google Scholar 

  24. Ivanovskaya M, Kotsikau D, Fagglia G, Nelli P, Irkaev S (2003) Gas-sensitive properties of thin film heterojunction structures based on Fe2O3–In2O3 nanocomposites. Sens Actuat B 93(1–3):422–430

    Google Scholar 

  25. Yokokawa H, Sakai N, Horita T, Yamaji K (2001) Recent developments in solid oxide fuel cell materials. Fuel cells 1(2):117–131

    CAS  Google Scholar 

  26. Xinshu N, Honghua L, Guogang L (2005) Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J Mol Catal A 232(1–2):89–93

    Google Scholar 

  27. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2017

    Google Scholar 

  28. Keller N, Mistrik J, Visnovsky S, Schmool DS, Dumont Y, Renaudin P, Guyot M, Krishnan R (2001) Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. Eur Phys J B 21(1):67–73

    CAS  Google Scholar 

  29. Obayashi H, Sakurai Y, Gejo T (1976) Perovskite-type oxides as ethanol sensors. J Solid State Chem 17:299–303

    CAS  Google Scholar 

  30. Martinelli G, Carotta MC, Ferroni M, Sadaoka Y, Traversa E (1999) Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens Actuat B 55:99–110

    Google Scholar 

  31. Niu X, Du W, Du W (2004) Preparation, characterization and gas-sensing properties of rare earth mixed oxides. Sens Actuat B 99:399–404

    Google Scholar 

  32. Arakawa T, Tsuchi-ya S, Shiokawa J (1981) Catalytic activity of rare-earth orthoferrites and orthochromites. Mat Res Bull 16:97–103

    CAS  Google Scholar 

  33. Aono H, Traversa E, Sakamoto M, Sadaoka Y (2003) Crystallographic crystallization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln-Fe hexacyanocomlexes, Ln[Fe(CN)6]*nH2O, Ln = La, Nd, Sm, Gd, an Dy. Sens Actuat B 94:132–139

    Google Scholar 

  34. Liu X, Hu J, Cheng B, Qin H, Zhao M, Yang C (2009) First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sens Actuat B 139:520–526

    Google Scholar 

  35. Liu X, Hu J, Cheng B, Qin H, Jiang M (2009) Preparation and gas sensing characteristics of p-type semiconducting LnFe0.9Mg0.1O3 (Ln = Nd, Sm, Gd and Dy) materials. Curr Appl Phys 9:613–617

    Google Scholar 

  36. Fino D, Russo N, Saracco G, Specchia V (2003) The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot. J Catal 217:367–375

    CAS  Google Scholar 

  37. Huang R-F, Howng W-Y (1996) Effect of defect structure on gas sensitivity of LaCrO3. J Mater Res 11(12):3077–3082

    CAS  Google Scholar 

  38. Toyama Prefecture (1984) Jpn Kokai Tokyo Koho, JP 59067601

    Google Scholar 

  39. Yamamoto A, Takada T, Nakamura T, Sato A, Endo E (2003) Sony Corp, Japan, Jpn. Kokai Tokkyo Koho, JP 2003200051

    Google Scholar 

  40. Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F (2001) Titania-supported cobalt and cobalt-phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation. J Catal 202(1):118–128

    CAS  Google Scholar 

  41. Pan TM, Lei TF, Chao TS (2001) High-κ cobalt-titanium oxide dielectrics formed by oxidation of sputtered Co/Ti or Ti/Co films. Appl Phys Lett 78(10):1439–1441

    CAS  Google Scholar 

  42. Chu X, Liu X, Wang G, Meng G (1999) Preparation and gas sensing properties of nano-CoTiO3. Mat Res Bull 34(10/11):1789–1795

    CAS  Google Scholar 

  43. Kohl C-D (2005) Electronic noses. In: Waser R (ed) Nanoelectronics and information technology. Wiley-VCH, Berlin

    Google Scholar 

  44. Schüth F (2004) Hochdurchsatzuntersuchungen, Chemische Technik: Prozesse und Produkte, In: Neue Technologien, Dittmeýer R, Keim W, Kreysa G, Oberholz A (eds), Winnacker/Küchler, vol 2. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  45. Hanak JJ (1970) The “multiple-sample concept” in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J Mater Sci 5:964–971

    CAS  Google Scholar 

  46. Hanak JJ (2004) A quantum leap in the development of new materials and devices. Appl Surf Sci 223(1–3):1–8

    CAS  Google Scholar 

  47. Xiang X-D, Schultz PG (1997) The combinatorial synthesis and evaluation of functional materials. Physica C 282–287:428–430

    Google Scholar 

  48. van Dover RB, Schneemeyer RF, Fleming RM (1998) Discovery of a useful thin-film dielectric using a composition-spread approach. Nature 392:162

    Google Scholar 

  49. Briceño G, Shang H, Sun X, Schultz PG, Xiang X-D (1995) A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270:273–275

    Google Scholar 

  50. Baeck SH, Jaramillo TF, Brändi C, McFarland EW (2002) Combinatorial electrochemical synthesis and characterization of tungsten-based mixed metal oxides. J Comb Chem 4:563–568

    CAS  Google Scholar 

  51. Reichenbach HM, McGinn PJ (2001) Combinatorial synthesis of oxide powders. J Mater Res 16(4):967–974

    CAS  Google Scholar 

  52. Hagemeyer A, Stasser P, Volpe AF Jr (eds) (2004) High-throughput screening in chemical catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  53. Aramova MA, Chang KS, Tageuchi I, Jabs H, Westerheim D, Gonzalez-Martin A, Kim J, Lewis B (2003) Combinatorial libraries of semiconductor gas sensor as inorganic electronic noses. Appl Phys Lett 83(6):1255–1257

    Google Scholar 

  54. Dagani R (1999) A faster route to new materials. Chem Eng News 77(10):51–60

    Google Scholar 

  55. Maier WF, Stöwe K, Sieg S (2007) Kombinatorische und Hochdurchsatz-Techniken in der Materialforschung. Angew Chem 119:2–60

    Google Scholar 

  56. Maier WF, Stöwe K, Sieg S (2007) Combinatorial and high-throughput materials science. Angew Chem Int Ed 46(32):6016–6067

    CAS  Google Scholar 

  57. Czarnik AW, DeWitt SH (eds) (1997) A practical guide to combinatorial chemistry. Am Chem Soc, Washington

    Google Scholar 

  58. Cong P, Dehestani A, Doolen R, Giaquinta DM, Guan S, Markov V, Poojary D, Self K, Turner H, Weinberg WH (1999) Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system. Proc Nat Acad Sci USA 96:11077–11080

    CAS  Google Scholar 

  59. Potyrailo RA, Mirsky VM (2008) Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev 108(2):770–813

    CAS  Google Scholar 

  60. Gurlo A (2006) Interplay between O2 and SnO2: oxygen ion sorption and spectroscopic evidence for adsorbed oxygen. Chem Phys Chem 7:2041–2052

    CAS  Google Scholar 

  61. Gurlo A, Riedel R (2007) In situ und Operando-Spektroskopie zur Untersuchung von Mechanismen der Gaserkennung. Angew Chem 119:3900–3923

    Google Scholar 

  62. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50

    CAS  Google Scholar 

  63. Bârsan N (1994) Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence. Sens Actuat B 17(3):241–246

    Google Scholar 

  64. Bârsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365(4):287–304

    Google Scholar 

  65. Baraton MI, Merhari L (2004) Advances in air quality monitoring via nanotechnology. J Nanoparticle Res 6(1):107–117

    CAS  Google Scholar 

  66. Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuat B 121(2):664–678

    Google Scholar 

  67. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuat B 5(1–4):7–19

    Google Scholar 

  68. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensor. Catal Surv Asia 7:63–75

    CAS  Google Scholar 

  69. Samson S, Fonstad CG (1973) Defect structure and electronic donor levels in stannic oxide crystals. J Appl Phys 44(10):4618–4621

    CAS  Google Scholar 

  70. Jarzebski ZM, Marton JM (1976) Physical properties of SnO2 materials. J Electrochem Soc 123:299C–310C

    CAS  Google Scholar 

  71. Maier J, Göpel W (1988) Investigations of the bulk defect chemistry of polycrystalline tin (IV) oxide. J Solid State Chem 72(2):293–302

    CAS  Google Scholar 

  72. Göpel W, Schierbaum KD (1995) Chemisorption and charge transfer at ionic semiconductor surfaces: imaging in designing gas sensors. Sens Actuat B 26–27:1–12

    Google Scholar 

  73. Weisz PB (1953) Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J Chem Phys 21:1531–1538

    CAS  Google Scholar 

  74. Lampe U, Fleischer M, Reitmeier N, Meixner H, McMonagle JB, Marsch A (1997) New metal oxide sensors: materials and properties. In: Göpel W, Hesse J, Zemel JN (eds) sensors, vol 2. Wiley-VCH, Weinheim, pp 29–30

    Google Scholar 

  75. Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53:4448–4454

    CAS  Google Scholar 

  76. Bârsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys: Condens Matter 15(20):R813–R839

    Google Scholar 

  77. Barton MI, Merhari L, Ferkerl H, Catagnet JF (2002) Comparsion of the gas sensing properties of tin, indium and tungsten oxides nanopowders: carbon monoxide and oxygen detection. Mater Sci Eng, C 19:315–321

    Google Scholar 

  78. Madou J, Morrison SR (1989) Chemical sensing with solid state devices. Academic Press, New York

    Google Scholar 

  79. Lenaerts S, Honore M, Huyberechts G, Roggen J, Maes G (1994) In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K. Sens Actuat B 19:478–482

    CAS  Google Scholar 

  80. Bârsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    Google Scholar 

  81. Öberg PǺ, Togawa T, Spelman FA (2004) Sensors in medicine and health Care. In: Hesse J, Gardner J, Göpel W (eds) Sensors Application, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  82. Schierbaum KD, Weimar U, Göpel W, Kowalowski R (1991) Conductance, work function and catalytic activity of SnO2-based gas sensors. Sens Actuat B 3:205–214

    Google Scholar 

  83. Nemov TG, Yordanov SP (1996) Ceramic sensors—technology and application. Technomic Publishing Company Inc, Lancaster, Pennsylvania, U S A 138

    Google Scholar 

  84. Pardo M, Sberveglieri G (2004) Electronic olfactory systems based on metal oxide semiconductor arrays. MRS Bull 29(19):703–708

    CAS  Google Scholar 

  85. Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuat B 140:319–336

    Google Scholar 

  86. Xu C, Tamaki J, Miura N, Yamazoe N (1989) International symposium on fire ceramics, Arita, Japan

    Google Scholar 

  87. Göpel W, Hesse J, Zemel JN (1991) Sensors—a comprehensive survey, vol 2. Wiley-VCH, Weinheim

    Google Scholar 

  88. Xu C, Tamaki J, Miura N, Yamazoe N (1990) Correlation between gas sensitivity and crystallite size in porous SnO2-based sensors. Chem Lett 19(3):441–444

    Google Scholar 

  89. Xu C, Tamaki J, Miura N, Yamazoe N (1990) Relationship between gas sensitivity and microstructure of porous stannic oxide. J Electrochem Soc Jpn 58(12):1143–1148

    CAS  Google Scholar 

  90. Xu V, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuat B 3(2):147–155

    Google Scholar 

  91. Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380

    CAS  Google Scholar 

  92. Wang X, Yee SS, Carey WP (1995) Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sens Actuat B 24–25:454–457

    Google Scholar 

  93. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mat Sci Eng R 61:1–39

    Google Scholar 

  94. Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO—nanostructures, defects, and devices. Mater Today 10(5):40–48

    CAS  Google Scholar 

  95. Gurlo A (2010) Nanosensors: does crystal shape matter? Small 6(11):2077–2079

    CAS  Google Scholar 

  96. Seyed-Razavi A, Snook IK, Barnard AS (2010) Origin of nanomorphology: does a complete theory of nanoparticle evolution exist? J Mater Chem 20:416–421

    CAS  Google Scholar 

  97. Abbet S, Heiz U (2004) The chemistry of nanomaterials. In: Rao CNR, Müller A, Cheetham AK (eds), vol 2. Wiley-VCH, Weinheim, 551–588

    Google Scholar 

  98. Wang Q, Ostafin AE (2004) Metal nanoparticles in catalysis. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology vol 5. American scientific: Stevenson Ranch, CA, 475–503

    Google Scholar 

  99. Panchapakesan B, De Voe DL, Widmaier MR, Cavicchi R, Semancik S (2001) Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12:336–349

    CAS  Google Scholar 

  100. Benkstein KD, Semancik S (2006) Mesoporous nanoparticles TiO2 thin films for conductometric gas sensing on micro hotplate platforms. Sens Actuat B 113:445–453

    Google Scholar 

  101. Hyodo T, Nishida N, Shimizu Y, Egashira M (2002) Preparation and gas sensing properties of thermally stable mesoporous SnO2. Sens Actuat B 83:209–215

    Google Scholar 

  102. Becker T, Ahlers S, Bosch von Braunmühl C, Müller G, Kisewetter O (2001) Gas sensing properties of thin- and thick-film tin-dioxide materials. Sens Actuat B 77(1–2):55–61

    Google Scholar 

  103. Shimizu Y, Jono A, Hyodo T, Egashira M (2005) Preparation of large mesoporous SnO2 powder for gas sensor application. Sens Actuat B 108:56–61

    Google Scholar 

  104. Shen G, Chen P-C, Ryu K, Zhou C (2009) Devices and chemical sensing applications of metal oxide nanowires. J Mater Chem 19:828–839

    CAS  Google Scholar 

  105. Raible I, Burghard M, Schlecht U, Yasuda A, Vossmeyer T (2005) V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. Sens Actuat B 106(2):730–735

    Google Scholar 

  106. Jiaqiang X, Yuping C, Yadong L, Jianian S (2005) Gas sensing properties of ZnO nanorods prepared by hydrothermal method. J Mater Sci 40(11):2919–2921

    Google Scholar 

  107. Baratto C, Comini E, Faglia G, Sberveglieri G, Zha M, Zappettini A (2005) Metal oxide nanocrystals for gas sensing. Sens Actuat B 109(1):2–6

    Google Scholar 

  108. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67

    CAS  Google Scholar 

  109. Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53

    CAS  Google Scholar 

  110. Maiti A (2004) Electrochemical and chemical sensing at the nanoscale: molecular modelling applications. Mol Sim 30(4):191–198

    CAS  Google Scholar 

  111. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192

    CAS  Google Scholar 

  112. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuat B 107:209–232

    Google Scholar 

  113. Morrison SR (1987) Selectivity in semiconductor gas sensors. Sens Actuat 12:425–440

    CAS  Google Scholar 

  114. Kohl D (1990) The role of noble metals in the chemistry of solid-state gas sensors. Sens Actuat B 1:158–165

    Google Scholar 

  115. Yamazoe N (1991) New approaches for improving semiconducting gas sensors. Sens Actuat B 5:7–19

    Google Scholar 

  116. Kappler J, Bârsan N, Weimar U, Diéguez A, Alay JL, Romano-Rodriguez A, Morante JR, Göpel W (1998) Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius J Anal Chem 361(2):110–114

    CAS  Google Scholar 

  117. Cabot A, Arbiol J, Morante JR, Weimar U, Bârsan N, Göpel W (2000) Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sens Actuat B 70(1–3):87–100

    Google Scholar 

  118. Tsud N, Johanek V, Stara I, Veltruska K, Matolin V (2001) ISS, and TPD study of Pd-Sn interactions on Pd-SnOX systems. Thin Solid Films 391:204–208

    CAS  Google Scholar 

  119. Nehasil V, Janecek P, Korotcenkov G, Matolin V (2003) Investigation of behaviour of Rh deposited onto polycrystalline SnO2 by means of TPD, AES and EELS. Surf Sci 532–535:415–419

    Google Scholar 

  120. Ruiz AM, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2005) Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens Actuat B 108(1–2):34–40

    Google Scholar 

  121. Mohr C, Hofmeister H, Radnik J, Claus P (2003) Identification of active sites in gold-catalysed hydrogenation of acrolein. J Am Chem Soc 125:1905–1911

    CAS  Google Scholar 

  122. Fong YY, Abdullah AZ, Ahmad AL, Bhatia S (2007) Zeolite membrane based selective gas sensors for monitoring and control of gas emissions. Sens Lett 5(3–4):485–499

    CAS  Google Scholar 

  123. Sahner K, Moos R, Matam M, Tunney JJ, Post M (2005) Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials. Sens Actuat B 108:102–112

    Google Scholar 

  124. Sahm T, Weizhi R, Bârsan N, Mädler L, Weimar U (2007) Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors. Sens Actuat B 127(1):63–68

    Google Scholar 

  125. Trimboli J, Mottern M, Verweij H, Dutta PD (2006) Interaction of water with Titania: implications for high-temperature gas sensing. J Phys Chem 110(11):5647–5654

    CAS  Google Scholar 

  126. Cabot A, Arbiol J, Cornet A, Morante JR, Chen F, Liu M (2003) Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films 436(1):64–69

    CAS  Google Scholar 

  127. Pijolat C, Viricelle JP, Tournier G, Montmeat P (2005) Application of membranes and filtering films for gas sensors improvements. Thin Solid Films 490(1):7–16

    CAS  Google Scholar 

  128. Simon U, Sanders D, Jockel J, Heppel C, Brinz T (2002) Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials. J Comb Chem 4:511–515

    CAS  Google Scholar 

  129. Frantzen A, Sanders D, Jockel J, Scheidtmann J, Frenzer G, Maier WF, Brinz T, Simon U (2004) Hochdurchsatzmethode zur impedanzspektroskopischen Charakterisierung resistiver Gassensoren. Angew Chem 116(6):770–773

    Google Scholar 

  130. Frantzen A, Sanders D, Jockel J, Scheidtmann J, Frenzer G, Maier WF, Brinz T, Simon U (2004) High-throughput method for the impedance spectroscopic characterization of resistive gas sensors. Angew Chem Int Ed 43(6):752–754

    CAS  Google Scholar 

  131. Simon U, Sanders D, Jockel J, Brinz T (2005) Setup for high-throughput impedance screening of gas-sensing materials. J Comb Chem 7(5):682–687

    CAS  Google Scholar 

  132. Frantzen A, Sanders D, Scheidtmann J, Simon U, Maier WF (2005) A flexible database for combinatorial and high-throughput materials science. QSAR Comb Sci 24:22–28

    CAS  Google Scholar 

  133. Figlarz M, Fiévet F, Lagier JP (1982) Process for reducing metallic compounds using polyols, and metallic powders produced thereby, European patent 0113281

    Google Scholar 

  134. Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet-Vincent F, Fiévet F (2000) CoNi and FeCoNi fine particles prepared by the polyol process : physico-chemical characterization and dynamic magnetic properties. J Mater Sci 35:3767–3784

    CAS  Google Scholar 

  135. Poul L, Ammar S, Jouini N, Fievet F, Villain F (2003) Synthesis of inorganic compounds (metal oxide and hydroxide) in medium. A versatile route related to the sol-gel process. J Sol-Gel Sci Technol 26:261–265

    CAS  Google Scholar 

  136. Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10:77–83

    Google Scholar 

  137. Feldmann C, Jungk H-O (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Ed 40(2):359–362

    CAS  Google Scholar 

  138. Siemons M, Weirich T, Maier J, Simon U (2004) Preparation of nanosized perovskite-type oxides via polyol method. Z Anorg Allg Chem 630(12):2083–2089

    CAS  Google Scholar 

  139. Koplin TJ (2006) Entwicklung und Anwendung von Hochdurchsatztechniken zur Darstellung und Untersuchung neuer nanostrukturierter Sensormaterialien, PhD thesis, RWTH Aachen University, Aachen

    Google Scholar 

  140. Siemons M, Koplin TJ, Simon U (2007) Advances in high throughput screening of gas sensing materials. Appl Surf Sci 254(3):669–676

    CAS  Google Scholar 

  141. Siemons M, Simon U (2006) High throughput screening of the sensing properties of doped SmFeO3. Sol State Phenom 128:225–236

    Google Scholar 

  142. Scheibe C, Obermeier E, Maunz W, Plog C (1994) Development of a high-temperature basic device for chemical sensors based on an IDC with on-chip heating. Sens Actuat B 25(1–3):403–406

    Google Scholar 

  143. Sanders D (2004) Entwicklung von Gassensoren auf Indiumoxid-Basis mittels Hochdurch¬satz-Impedanzspektroskopie, PhD thesis, RWTH Aachen University, Aachen

    Google Scholar 

  144. Bergh SH, Guan S (2000) Fluid distribution for chemical processing microsystems, US Patent 6890493

    Google Scholar 

  145. Feldmann C (2003) Polyol-mediated synthesis of nanoscale functional materials. Adv Funct Mater 13(2):101–107

    CAS  Google Scholar 

  146. Feldmann C (2004) Darstellung und Charakterisierung der nanoskaligen Vb-Metalloxide M2O5 (M = V, Nb, Ta). Z Anorg Chem 630:2473–2477

    CAS  Google Scholar 

  147. Fièvet F, Sugimoto T (eds) (2000) Polyol process, in fine particles: synthesis, characterization, and mechanisms of growth. Marcel Dekker, New York, pp 460–496

    Google Scholar 

  148. Poul L, Jouini N, Fièvet F (2000) Layered hydroxide metal acetates (metal = zinc, cobalt and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem Mater 12:3123–3132

    CAS  Google Scholar 

  149. Siemons M, Leifert A, Simon U (2007) Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting rare-earth orthoferrites LnFeO3 and orthochromites LnCrO3 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Adv Funct Mater 17:2189–2197

    CAS  Google Scholar 

  150. Siemons M, Simon U (2007) Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sens Actuat B 126:595–603

    Google Scholar 

  151. Siemons M, Simon U (2006) Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sens Actuat B 120(1):110–118

    Google Scholar 

  152. Frenzer G, Frantzen A, Sanders D, Simon U, Maier WF (2006) Wet chemical synthesis and screening of thick porous oxide films for resistive gas sensing applications. Sensors 6:1568–1586

    CAS  Google Scholar 

  153. Sanders D, Simon U (2007) High-throughput gas sensing screening of surface doped In2O3. J Comb Chem 9:53–61

    CAS  Google Scholar 

  154. Lyubutin IS, Dmitrieva TV, Stepin AS (1999) Dependence of exchange interactions on chemical bond angle in a structural series: cubic perovskite-rhombic orthoferrite-rhombohedral hematite. J Exp Theor Phys 88(3):590–597

    CAS  Google Scholar 

  155. Krischner H, Koppelhuber-Bitschnau B (1994) Röntgenstrukturanalyse und Rietveldmethode, eine Einführung, Vieweg Verlag

    Google Scholar 

  156. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 98–100

    Google Scholar 

  157. Birks LS, Friedman H (1946) Particle size determination from X-ray line broadening. J Appl Phys 17(8):687–692

    CAS  Google Scholar 

  158. Siemons M (2006) High throughput methods for synthesis and impedance characterization of ABO3 gas sensing materials, PhD thesis, RWTH Aachen University, Aachen

    Google Scholar 

  159. Elbe D, Brinz T, Ullmann I, Krummel C, Schelling C, Heppel C, Robert Bosch GmbH (2004) DE 10319193 A1 20041118

    Google Scholar 

  160. Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensor. MRS Bull 24(6):18–24

    CAS  Google Scholar 

  161. Sanders D, Siemons M, Koplin TJ, Simon U (2005) Development of a high-throughput impedance spectroscopy screening system (HT-IS) for characterization of novel nanoscaled gas sensing materials, Mater. Res. Soc. Symposium Proceedings 876E, R6.1.1–R6.1.6

    Google Scholar 

  162. Koplin TJ, Siemons M, Océn-Valéntine C, Sanders D, Simon U (2006) Workflow for high-throughput screening of gas sensing materials. Sensors 6:298–307

    CAS  Google Scholar 

  163. Siemons M, Simon U (2007) High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sens Actuat B 126(1):181–186

    Google Scholar 

  164. Heinert L (2000) Systematische Struktur-Wirkungs-Untersuchungen zwischen halbleitenden Metalloxidsensoren und Kohlenwasserstoffen, PhD thesis, Justus-Liebig-Universität Giessen

    Google Scholar 

  165. Song P, Qin H, Zhang L, Liu X, Huang S, Hu J, Jiang M (2005) Electrical and CO gas-sensing properties of perovskite-type La0.8Pb0.2Fe0.8Co0.2O3 semiconductive material. Phys B 368(1–4):204–208

    CAS  Google Scholar 

  166. Lee H-J, Song J-H, Yoon Y-S, Kim T-S, Kim K-J, Choi W-K (2001) Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sens Actuat B 79:200–205

    Google Scholar 

  167. Arakawa T, Kurachi H, Shiokawa J (1985) Physicochemical properties of rare earth perovskite oxides used as gas sensor material. J Mater Sci 20:1207–1210

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Melanie Homberger and Jutta Kiesgen for their great technical and graphical support for preparing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Belle, C.J., Simon, U. (2013). Combinatorial Approaches for Synthesis of Metal Oxides: Processing and Sensing Application. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_4

Download citation

Publish with us

Policies and ethics