Surface Science Studies of Metal Oxide Gas Sensing Materials

Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

In this chapter we present recent advances in the study of metal oxide surfaces and put them in relation to gas sensing properties. A reoccurring scheme is the dependence of chemical surface properties on the crystallographic orientation of the surface. This dependence will become more important in gas sensing applications as nanomaterials with controlled crystal shapes are being designed. In particular we focus on differences of the surface properties of the two polar surfaces of ZnO and the two most abundant bulk terminations of rutile TiO2, i.e. the (110) and (011) crystallographic orientations. On the example of these metal oxides, we describe the use of vacuum based surface science techniques, especially scanning tunneling microscopy and photoemission spectroscopy, to obtain structural, chemical, and electronic information.

Keywords

Zinc TiO2 Titanium Anisotropy Sulfide 

Notes

Acknowledgments

Support from the National Science Foundation under grant CHE-0840547 is acknowledged.

References

  1. 1.
    Göpel W (1985) Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors. Prog Surf Sci 20:9CrossRefGoogle Scholar
  2. 2.
    Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154CrossRefGoogle Scholar
  3. 3.
    Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9:2307CrossRefGoogle Scholar
  4. 4.
    Batzill M (2006) Surface science studies of gas sensing materials: SnO2. Sensors 6:1345CrossRefGoogle Scholar
  5. 5.
    Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55CrossRefGoogle Scholar
  6. 6.
    Chevtchenko SA, Moore JC, Özgür U, Gu X, Baski AA, Morkoc H, Nemeth B, Nause JE (2006) Comparative study of the (0001) and (000–1) surfaces of ZnO. Appl Phys Lett 89:182111CrossRefGoogle Scholar
  7. 7.
    Lahiri J, Senanayake S, Batzill M (2008) Soft x-ray photoemission of clean and sulfur-covered polar ZnO surfaces: a view of the stabilization of polar oxide surfaces. Phys Rev B 78:155414CrossRefGoogle Scholar
  8. 8.
    Dulub O, Diebold U, Kresse G (2003) Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys Rev Lett 90:016102CrossRefGoogle Scholar
  9. 9.
    Bagus PS, Illas F, Pacchioni G, Parmigiani F (1999) Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. J Electron Spectrosc Relat Phenom 100:215CrossRefGoogle Scholar
  10. 10.
    Kresse G, Dulub O, Diebold U (2003) Competing stabilization mechanism of the polar ZnO(0001)-Zn surface. Phys Rev B 68:245409CrossRefGoogle Scholar
  11. 11.
    Önsten A, Stoltz D, Palmgren P, Yu S, Göthelid M, Karlsson UO (2010) Water adsorption on ZnO(0001): transition from triangular surface structure to a disordered hydroxyl terminated phase. J Phys Chem C 114:11157CrossRefGoogle Scholar
  12. 12.
    Valtiner M, Torrelles X, Pareek A, Borodin S, Gies H, Grundmeier G (2010) In Situ study of the polar ZnO(0001)-Zn surface in Alkaline electrolytes. J Phys Chem C 114:15440CrossRefGoogle Scholar
  13. 13.
    Kunat M, Gil Girol S, Becker T, Burghaus U, Wöll C (2002) Stability of the polar surfaces of ZnO: A reinvestigation using He-atom scattering. Phys Rev B 66:081402CrossRefGoogle Scholar
  14. 14.
    Meyer B, Marx D (2003) Density-functional study of the structure and stability of ZnO surfaces. Phys Rev B 67:035403CrossRefGoogle Scholar
  15. 15.
    Piper LFJ, Preston ARH, Fedorov A, Cho SW, DeMasi A, Smith KE (2010) Direct evidence of metallicity at ZnO(000–1)-(1 × 1) surfaces from angle resolved photoemission spectroscopy. Phys Rev B 81:233305CrossRefGoogle Scholar
  16. 16.
    Ozawa K, Mase K (2010) Metallization of ZnO(10–10) by adsorption of hydrogen, methanol, and water: angle-resolved photoelectron spectroscopy. Phys Rev B 81:205322CrossRefGoogle Scholar
  17. 17.
    Li L, King DL (2006) H2S removal with ZnO during fuel processing for PEM fuel cell applications. Catal Today 116:537–541CrossRefGoogle Scholar
  18. 18.
    Lahiri J, Batzill M (2008) Surface functionalizationSurface functionalization of ZnO photocatalysts with monolayer ZnS. J Phys Chem C 112:4304CrossRefGoogle Scholar
  19. 19.
    Knop-Gericke A, Kleimenov E, Haevecker M, Blume R, Teschner D, Zafeiratos S, Schloegl R, Bukhtiyarov VI, Kaichev VV, Prosvirin IP, Nizovskii AI, Bluhm H, Barinov A, Dudin P, Kiskinova M (2009) X-Ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal 52:213CrossRefGoogle Scholar
  20. 20.
    Zhang C, Grass ME, McDaniel AH, DeCaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne MA, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nature Mat. 9:944CrossRefGoogle Scholar
  21. 21.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53CrossRefGoogle Scholar
  22. 22.
    Liang Y, Gan SP, Chambers SA, Altman EI (2001) Surface structure of anatase TiO2(001): reconstruction, atomic steps, and domains. Phys Rev B 63:235402CrossRefGoogle Scholar
  23. 23.
    Chambers SA, Wang CM, Thevuthasan S, Droubay T, McCready DE, Lea AS, Shutthanandan V, Windisch CF (2002) Epitaxial growth and properties of MBE-grown ferromagnetic Co-doped TiO2 anatase films on SrTiO3(001) and LaAlO3(001). Thin Solid Films 418:197CrossRefGoogle Scholar
  24. 24.
    Dohnálek Z, Lyubinetsky I, Rousseau R (2010) Thermally-driven processes on rutile TiO2(110)-1 × 1: a direct view at the atomic scale. Prog Surf Sci 85:161CrossRefGoogle Scholar
  25. 25.
    Torrelles X, Cabailh G, Lindsay R, Bikondoa O, Roy J, Zegenhagen J, Teobaldi G, Hofer WA, Thornton G (2008) Geometric structure of TiO2(011)(2 × 1). Phys Rev Lett 101:185501CrossRefGoogle Scholar
  26. 26.
    Gong X-Q, Khorshidi N, Stierle A, Vonk V, Ellinger C, Dosch H, Cheng H, Selloni A, He Y, Dulub O, Diebold U (2009) The 2 × 1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf Sci 603:138CrossRefGoogle Scholar
  27. 27.
    He Y, Li W-K, Gong X-Q, Dulub O, Selloni A, Diebold U (2009) Nucleation and growth of 1D water clusters on Rutile TiO2 (011)-2 × 1. Phys Chem C 113:10329–10332CrossRefGoogle Scholar
  28. 28.
    Beck TJ, Klust A, Batzill M, Diebold U, Di Valentin C, Selloni A (2004) Surface structure of TiO2(011)-(2 × 1). Phys Rev Lett 93:036104CrossRefGoogle Scholar
  29. 29.
    Guo Q, Cocks I, Williams EM (1997) The orientation of acetate on a TiO2(110) surface. J Chem Phys 106:2924CrossRefGoogle Scholar
  30. 30.
    Thevuthasan S, Herman GS, Kim YJ, Chambers SA, Peden CHF, Wang Z, Ynzunza RX, Tober ED, Morais J, Fadley CS (1998) The structure of formate on TiO2(110) by scanned-energy and scanned-angle photoelectron diffraction. Surf Sci 401:261CrossRefGoogle Scholar
  31. 31.
    Gutierrez-Sosa A, Martinez-Escolano P, Raza H, Lindsay R, Wincott PL, Thornton G (2001) Orientation of carboxylates on TiO2(110). Surf Sci 471:163CrossRefGoogle Scholar
  32. 32.
    Bates SP, Kresse G, Gillan MJ (1998) The adsorption and dissociation of ROH molecules on TiO2(110). Surf Sci 409:336CrossRefGoogle Scholar
  33. 33.
    Onishi H, Iwasawa Y (1996) STM observation of surface reactions on a metal oxide. Surf Sci 357:773CrossRefGoogle Scholar
  34. 34.
    Tao J, Luttrell T, Bylsma J, Batzill M (2011) Adsorption of acetic acid on rutile TiO2(110) vs (011)-2 × 1 surfaces. J Phys Chem C 115:3434CrossRefGoogle Scholar
  35. 35.
    Henrich VE, Dresselhaus G, Zeiger HJ (1976) Observation of two-dimensional phases associated with defect states on the surface of TiO2. Phys RevLett 36:1335Google Scholar
  36. 36.
    Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110). J Phys Chem B 107:534–545CrossRefGoogle Scholar
  37. 37.
    Kurtz RL, Stockbauer R, Madey TE, Roman E, Desegovia JL (1989) Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf Sci 218:178CrossRefGoogle Scholar
  38. 38.
    Zhang Z, Jeng S-P, Henrich VE (1991) Cation-ligand hybridization for stoichiometric and reduced TiO2 (110) surfaces determined by resonant photoemission. Phys Rev B 43:12004CrossRefGoogle Scholar
  39. 39.
    Bao S, Liu G, Woodruff DP (1988) Angle-resolved polarised light photoemission study of the formation and structure of acetate on Cu(110). Surf Sci 203:89CrossRefGoogle Scholar
  40. 40.
    Karis O, Hasselstrom J, Wassdahl N, Weinelt M, Nilsson A, Nyberg M, Pettersson LGM, Stohr J, Samant MG (2000) The bonding of simple carboxylic acids on Cu(110). J Chem Phys 112:8146CrossRefGoogle Scholar
  41. 41.
    Tao J, Batzill M (2010) Role of surface structure on the charge trapping in TiO2 photocatalysts. J Phys Chem Lett 1:3200CrossRefGoogle Scholar
  42. 42.
    Redinger A, Hansen H, Linke U, Rosandi Y, Urbassek HM, Michely T (2006) Superior regularity in erosion patterns by planar subsurface channeling. Phys Rev Lett 96:106103CrossRefGoogle Scholar
  43. 43.
    Redinger A, Rosandi Y, Urbassek HM, Michely T (2008) Step-edge sputtering through grazing incidence ions investigated by scanning tunneling microscopy and molecular dynamics simulations. Phys Rev B 77:195436CrossRefGoogle Scholar
  44. 44.
    Luttrell T, Batzill M (2010) Nanoripple formation on TiO2(110) by low-energy grazing incidence ion sputtering. Phys Rev B 82:035408CrossRefGoogle Scholar
  45. 45.
    Gong XQ, Selloni A, Batzill M, Diebold U (2006) Steps on anatase TiO2(101). Nat Mater 5:665CrossRefGoogle Scholar
  46. 46.
    Luttrell T, Li WK, Gong XQ, Batzill M (2009) New directions for atomic steps: step alignment by grazing incident ion beams on TiO2(110). Phys Rev Lett 102:166103CrossRefGoogle Scholar
  47. 47.
    Li M, Hebenstreit W, Gross L, Diebold U, Henderson MA, Jennison DR, Schultz PA, Sears MP (1999) Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study. Surf Sci 437:173CrossRefGoogle Scholar
  48. 48.
    Bowker M, Bennett RA (2009) The role of Ti3+ interstitials in TiO2(110) reduction and oxidation. J Phys Condens Matt 21:474224CrossRefGoogle Scholar
  49. 49.
    Stone P, Bennett RA, Bowker M (1999) Reactive re-oxidation of reduced TiO2(110) surfaces demonstrated by high temperature STM movies. New J Phys 1:8CrossRefGoogle Scholar
  50. 50.
    McCarty KF (2003) Growth regimes of the oxygen-deficient TiO2(110) surface exposed to oxygen. Surf Sci 543:185CrossRefGoogle Scholar
  51. 51.
    Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem 3:296CrossRefGoogle Scholar
  52. 52.
    Gurlo Nanosensors A (2010) Does crystal shape matter? Small 6:2077CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South FloridaTampaUSA

Personalised recommendations