Skip to main content

Multisensor Micro-Arrays Based on Metal Oxide Nanowires for Electronic Nose Applications

  • Chapter
  • First Online:

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

During the last decade, quasi-1D metal oxide nanostructures were proven to be a promising material platform to design new gas sensing elements. This chapter surveys the recent developments of the analytical devices based on multisensor arrays made of metal oxide nanowires. We briefly discuss the advantages and challenges of electronic noses and the major milestones of their development. We show that evolution of the nanowire based electronic noses follows the same trends: from fabrication of the devices based on discrete nanowires to creation of integrated systems made of nanowire mats and finally realization of a monolithic sensor array made from a single nanowire. The parameters and performance of such analytical systems is reviewed and fabrication protocols are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    in other words, to generate “electronic tongue” or biosensor matrices signal.

  2. 2.

    for instance, resistance, capacitance and potential.

  3. 3.

    The influence of surface Ni doping is discussed later in the text.

  4. 4.

    The conducting channel forms a “core” while the near-surface DR represents a “shell” in the nanostructure.

  5. 5.

    which are close to the parameters of the chip designed by Semancik group.

References

  1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  Google Scholar 

  2. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  Google Scholar 

  3. Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895

    Article  CAS  Google Scholar 

  4. Haddad R, Khan R, Takahashi YK, Mori K, Harel D et al (2008) A metric for odorant comparison. Nat Methods 5:425–429

    Article  CAS  Google Scholar 

  5. Pearce TC, Schiffman SS, Nagle HT, Gardner JW (eds) (2003) Handbook of machine olfaction: electronic nose technology. Wiley, Weinheim, p 592

    Google Scholar 

  6. Turner A, Magan N (2004) Electronic noses and disease diagnostics. Nat Rev Microbiol 2:161–166

    Article  CAS  Google Scholar 

  7. Kauer JS (2002) On the scents of smell in the salamander. Nature 417:336–342

    Article  CAS  Google Scholar 

  8. Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715

    Article  CAS  Google Scholar 

  9. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355

    Article  CAS  Google Scholar 

  10. Gardner JW, Bartlett PN (1996) Performance definition and standardization of electronic noses. Sens Actuators B Chem 33:60–67

    Article  Google Scholar 

  11. Monkman G (1996) Bio-chemical sensors. Sens Rev 16:40–44

    Article  Google Scholar 

  12. Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuators B Chem 18:210–211

    Article  Google Scholar 

  13. Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectr 35:22–34

    Article  Google Scholar 

  14. Lundstrom I, Erlandsson R, Frykman U, Hedborg E, Spetz A et al (1991) Artificial ‘olfactory’ images from a chemical sensor using a light-pulse technique. Nature 352:47–50

    Article  Google Scholar 

  15. Goschnick J (2001) An electronic nose for intelligent consumer products based on a gas analytical gradient micro-array. Microelectron Eng 57–58:693–704

    Article  Google Scholar 

  16. Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N et al (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296

    Article  CAS  Google Scholar 

  17. Joo S, Brown RB (2008) Chemical sensors with integrated electronics. Chem Rev 108:638–651

    Article  CAS  Google Scholar 

  18. Horner GMR, Gardner JW, Bartlett PN (1992) Odour sensors for an electronic nose. Sensors and sensory systems for and electronic nose. Kluwer Academic Publishers, Dordrecht, p 327

    Google Scholar 

  19. Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108:563–613

    Article  CAS  Google Scholar 

  20. Baltes H, Barrettino D, Graf D et al (2004) Microsensor and single chip integrated microsensor system. US Patent & Trademark Office, USA Patent 2004-0075140

    Google Scholar 

  21. Graf M, Barrettino D, Baltes HP, Hierlemann A (2007) CMOS hotplate microsensors. Springer, Berlin, p 125

    Google Scholar 

  22. Li Y, Vancura C, Barrettino D, Graf M, Hagleitner C et al (2007) Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes. Sens Actuators B Chem 126:431–440

    Article  Google Scholar 

  23. Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304

    Article  CAS  Google Scholar 

  24. Sysoev VV, Button BK, Wepsiec K, Dmitriev S, Kolmakov A (2006) Toward the nanoscopic “electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett 6:1584–1588

    Article  CAS  Google Scholar 

  25. Lundstrom I, Armgarth M, Spetz A, Winquist F (1986) Gas sensors based on catalytic metal-gate field-effect devices. Sens Actuators 10:399–421

    Article  Google Scholar 

  26. Dickinson TA, White J, Kauer JS, Walt DR (1996) A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382:697–700

    Article  CAS  Google Scholar 

  27. Dickinson TA, Michael KL, Kauer JS, Walt DR (1999) Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal Chem 71:2192–2198

    Article  CAS  Google Scholar 

  28. Albert KJ, Walt DR, Gill DS, Pearce TC (2001) Optical multibead arrays for simple and complex odor discrimination. Anal Chem 73:2501–2508

    Article  CAS  Google Scholar 

  29. Walt DR (2000) Bead-based fiber-optic arrays. Science 287:451–452

    Article  CAS  Google Scholar 

  30. LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637

    Google Scholar 

  31. Kermani BG, Fomenko I, Kotseroglou T, Forood B, Clark L et al (2006) Decoding beads in a randomly assembled optical nose. Sens Actuators B Chem 117:282–285

    Article  Google Scholar 

  32. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713

    Article  CAS  Google Scholar 

  33. Suslick KS (2004) An optoelectronic nose: “seeing” smells by means of colorimetric sensor arrays. MRS Bull 29:720–725

    Article  CAS  Google Scholar 

  34. Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006) Colorimetric sensor arrays for volatile organic compounds. Anal Chem 78:3591–3600

    Article  CAS  Google Scholar 

  35. Snow A, Wohltjen H (2008) Materials, method and apparatus for detection and monitoring of chemical species. US patent 7,347,974, Bl, USA

    Google Scholar 

  36. Rapp M, Reibel J, Voigt A, Balzer M, Bülow O (2000) New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators. Sens Actuators B Chem 65:169–172

    Article  Google Scholar 

  37. Barie N, Bucking M, Rapp M (2006) A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sens Actuators B Chem 114:482–488

    Article  Google Scholar 

  38. Baller MK, Lang HP, Fritz J, Gerber C, Gimzewski JK et al (2000) A cantilever array-based artificial nose. Ultramicroscopy 82:1–9

    Article  CAS  Google Scholar 

  39. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P et al (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    Article  CAS  Google Scholar 

  40. Braun T, Ghatkesar MK, Backmann N, Grange W, Boulanger P et al (2009) Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat Nanotech 4:179–185

    Article  CAS  Google Scholar 

  41. Freund MS, Lewis NS (1995) A Chemically diverse conducting polymer-based electronic nose. Proc Nat Acad Sci USA 92:2652–2656

    Article  CAS  Google Scholar 

  42. Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH et al (1996) Array-based vapor sensing using chemically sensitive, carbon black polymer resistors. Chem Mater 8:2298–2312

    Article  CAS  Google Scholar 

  43. Shevade AV, Ryan MA, Homer ML, Manfreda AM, Zhou, H et al (2003) Molecular modeling of polymer composite-analyte interactions in electronic nose sensors. Sens Actuators B Chem 93:84–91

    Google Scholar 

  44. Ryan MA, Shevade AV, Zhou H, Homer ML (2004) Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull 29:714–719

    Article  CAS  Google Scholar 

  45. Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sens Actuators B Chem 72:41–50

    Article  Google Scholar 

  46. Semancik S, Cavicchi RE, Wheeler MC, Tiffany JE, Poirier GE et al (2001) Microhotplate platforms for chemical sensor research. Sens Actuators B Chem 77:579–591

    Article  Google Scholar 

  47. Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD et al (2007) The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens Actuators B Chem 121:282–294

    Article  Google Scholar 

  48. Suehle JS, Cavicchi RE, Gaitan M, Semancik S (1993) Tin oxide gas sensor fabricated using CMOS micro-hotplates and insitu processing. IEEE Electron Device Lett 14:118–120

    Article  CAS  Google Scholar 

  49. Althainz P, Dahlke A, Frietsch-Klarhof M, Goschnick J, Ache HJ (1995) Reception tuning of gas-sensor microsystems by selective coatings. Sens Actuators B Chem 25:366–369

    Google Scholar 

  50. Althainz P, Goschnick J (1998) Sensor for reducing or oxidizing gases. USA patent 5,783,154, USA

    Google Scholar 

  51. Schierbaum KD, Weimar U, Gopel W, Kowalkowski R (1991) Conductance, work function and catalytic activity of SnO2-Based gas sensors. Sens Actuators B Chem 3:205–214

    Article  Google Scholar 

  52. Dutronc P, Lucat C, Menil F, Loesch M, Combes L (1993) A new approach to selectivity in methane sensing. Sens Actuators B Chem 15:24–31

    Article  CAS  Google Scholar 

  53. Takagi T (1996) The concept and the recent research on intelligent materials. SPIE Proceedings 2779:2–15

    Google Scholar 

  54. Coller G (1996) Intelligent materials and systems as a basis for innovative technologies in transportation vehicles. SPIE Proceedings 2779:16–27

    Google Scholar 

  55. Potyrailo RA, Morris WG, Sivavec T, Tomlinson HW, Klensmeden S et al (2009) RFID sensors based on ubiquitous passive 13.56-MHz RFID tags and complex impedance detection. Wirel Commun Mob Comput 9:1318–1330

    Google Scholar 

  56. Young RC, Buttner WJ, Linnell BR, Ramesham R (2003) Electronic nose for space program applications. Sens Actuators B Chem 93:7–16

    Google Scholar 

  57. Goschnick J (2001) An electronic nose for intelligent consumer products based on a gas analytical gradient micro-array. Microelectron Eng 57(8):693–704

    Article  Google Scholar 

  58. Ampuero S, Bosset J (2003) The electronic nose applied to dairy products: a review. Sens Actuators B Chem 94:1–12

    Article  Google Scholar 

  59. Roeck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725

    Article  CAS  Google Scholar 

  60. Czarnic AW, DeWitt SH (1997) A practical guide to combinatorial chemistry. American Chemical Society, Washington, p 450

    Google Scholar 

  61. Potyrailo RA, Mirsky VM (2008) Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev 108:770–813

    Article  CAS  Google Scholar 

  62. Scott RWJ, Yang SM, Chabanis G, Coombs N, Williams DE et al (2001) Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv Mater 13:1468–1472

    Article  CAS  Google Scholar 

  63. Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21:7937–7944

    Article  CAS  Google Scholar 

  64. Ng HT, Li J, Smith MK, Nguyen P, Cassell A et al (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249

    Article  CAS  Google Scholar 

  65. Hong YJ, Jung HS, Yoo J, Kim Y-J, Lee C-H et al (2009) Shape-controlled nanoarchitectures using nanowalls. Adv Mater 21:222–226

    Article  CAS  Google Scholar 

  66. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    Article  CAS  Google Scholar 

  67. Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871

    Article  CAS  Google Scholar 

  68. Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie-Int Ed 41:2405–2408

    Article  CAS  Google Scholar 

  69. Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000

    Article  CAS  Google Scholar 

  70. Wang YL, Jiang XC, Xia YN (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177

    Article  CAS  Google Scholar 

  71. Li C, Zhang DH, Liu XL, Han S, Tang T et al (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82:1613–1615

    Article  CAS  Google Scholar 

  72. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  73. Heo YW, Norton D, Tien L, Kwon Y, Kang B et al (2004) ZnO nanowire growth and devices. Mater Sci Eng R 47:1–47

    Article  Google Scholar 

  74. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40

    Article  CAS  Google Scholar 

  75. Lu JG, Chang P, Fan Z (2006) Quasi-one-dimensional metal oxide materials–synthesis, properties and applications. Mater Sci Eng R 52:49–91

    Article  Google Scholar 

  76. Chen P-C, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. Nanotechnol IEEE Trans 7:668–682

    Article  Google Scholar 

  77. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39

    Article  Google Scholar 

  78. Kolmakov A (2008) Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors. Int J Nanotechnol 5:450–474

    Article  CAS  Google Scholar 

  79. Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673

    Article  CAS  Google Scholar 

  80. Kolmakov A, Chen XH, Moskovits M (2008) Functionalizing nanowires with catalytic nanoparticles for gas sensing application. J Nanosci Nanotechnol 8:111–121

    Article  CAS  Google Scholar 

  81. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384

    Article  CAS  Google Scholar 

  82. Ryu K, Zhang D, Zhou C (2008) High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates. Appl Phys Lett 92:093111

    Google Scholar 

  83. Chen PC, Ishikawa FN, Chang HK, Ryu K, Zhou C (2009) A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 20:125503-1–125503-8

    Google Scholar 

  84. Baik JM, Zielke M, Kim MH, Turner KL, Wodtke AM et al (2010) Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4:3117–3122

    Article  CAS  Google Scholar 

  85. Henrion R, Henrion G (1995) Multivariate datenanalyse: Methodik und Anwendung in der Chemie und verwandten Gebieten. Springer, Berlin

    Google Scholar 

  86. Jurs P, Bakken G, McClelland H (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100:2649–2678

    Article  CAS  Google Scholar 

  87. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE et al (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626

    Article  CAS  Google Scholar 

  88. Sysoev VV, Kiselev I, Frietsch M, Goschnick J (2004) Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor micro-array. Sensors 4:37–46

    Article  CAS  Google Scholar 

  89. Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient micro-array electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7:3182–3188

    Article  CAS  Google Scholar 

  90. Dolbec R, El Khakani MA (2007) Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2 : Pt based sensors. Appl Phys Lett 90:173114-1–173114-3

    Google Scholar 

  91. Hernandez-Ramirez F, Tarancon A, Casals O, Arbiol J, Romano-Rodriguez A et al (2007) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuators B: Chem Spec Issue: 25th Anniversary Sens Actuators B Chem 121:3–17

    Google Scholar 

  92. Kumar S, Murthy JY, Alam MA (2005) Percolating conduction in finite nanotube networks. Phys Rev Lett 95:066802

    Article  CAS  Google Scholar 

  93. Stauffer DA, Aharony A (1994) Introduction to percolation theory. CRC, London, p 192

    Google Scholar 

  94. Sukharev VY (1993) Percolation model of adsorption-induced response of the electrical characteristics of polycrystalline semiconductor adsorbents. J Chem Soc, Faraday Trans 89:559–572

    Article  CAS  Google Scholar 

  95. Kalinin SV, Shin J, Jesse S, Geohegan D, Baddorf AP et al (2005) Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J Appl Phys 98:004503-1–004503-8

    Article  Google Scholar 

  96. Go J, Sysoev V, Kolmakov A, Pimparkar N, Alam M (2009) A novel model for (percolating) nanonet chemical sensors for micro-array-based E-nose applications. International Electron Devices Meeting, Baltimore, USA, art. 5424266:26.6.1–26.6.4

    Google Scholar 

  97. Sysoev V, Kucherenko N, Kissin V (2004) Textured tin dioxide films for gas recognition microsystems. Tech Phys Lett 30:759–761

    Article  CAS  Google Scholar 

  98. Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W et al (2009) Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B Chem 139:699–703

    Article  Google Scholar 

  99. Goschnick J, Hahn H, Schneider T, Shankar R (2006) Mechanism dependent detection properties of layers based on tin oxide nanoparticles prepared by chemical vapor synthesis (CVS). Proceedings of 11th International Meeting on Chemical Sensors: MP69

    Google Scholar 

  100. Caldararu M, Sprinceana D, Popa V, Ionescu N (1996) Surface dynamics in tin dioxide-containing catalysts II. Competition between water and oxygen adsorption on polycrystalline tin dioxide. Sens Actuators B: Chem 30:35–41

    Article  Google Scholar 

  101. Weisz PB (1953) Effects of electronic charge transfer between adsorbat and solid and chemisorption and catalysis. J Chem Phys 21:1531–1538

    Article  CAS  Google Scholar 

  102. Chaim R, Levin M, Shlayer A, Estournes C (2008) Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv Appl Ceram 107:159–169

    Article  CAS  Google Scholar 

  103. Tielmann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388

    Google Scholar 

  104. Ulrich M, Bunde A, Kohl CD (2004) Percolation and gas sensitivity in nanocrystalline metal oxide films. Appl Phys Lett 85:242–244

    Article  CAS  Google Scholar 

  105. Sysoev VV, Strelcov E, Sommer M, Bruns M, Kiselev I et al (2010) Single-nanobelt electronic nose: engineering and tests of the simplest analytical element. ACS Nano 4:4487–4494

    Article  CAS  Google Scholar 

  106. Sysoev V, Strelcov E, Kar S, Kolmakov A (2011) The electrical characterization of a multi-electrode odor detection sensor array based on the single SnO2 nanowire. Thin Solid Films 520:898–903

    Article  CAS  Google Scholar 

  107. Bruns M, Frietsch M, Nold E, Trouillet V, Baumann H et al (2003) Surface analytical characterization of SiO gradient membrane coatings on gas sensor micro-arrays. J Vacuum Sci Technol A: Vacuum, Surf, Films 21:1109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. Sommer, Dr. I. Kiselev, Dr. M. Bruns, Mr. W. Habicht, Mr. G. Stengel, Mr. J. Benz, Dr. D. Fuchs (KIT, Karlsruhe, Germany), Prof. S. Kar (Northeastern University, Boston, USA), Dr. S. Zemskova (CAT, Peoria, USA), Dr. L. Gregoratti, Dr. M. Kiskinova (Elettra, Trieste, Italy) for their support and assistance in the course of these studies. The research at SIUC was supported through Caterpillar Inc. research grant and at later stages through NSF ECCS-0925837 grant. V. S. thanks the financial support of his work on the project from the Fulbright postdoc scholarship, INTAS postdoc grant no. YSF 06-1000014-5877, “Michail Lomonosov” scholarship from Russ. Ministry for Education & Science and DAAD. no. A/05/58552, as well as the travel grant of Russ. Ministry for Education and Science, no. RI-111/002/012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Kolmakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sysoev, V.V., Strelcov, E., Kolmakov, A. (2013). Multisensor Micro-Arrays Based on Metal Oxide Nanowires for Electronic Nose Applications. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_15

Download citation

Publish with us

Policies and ethics