Skip to main content

Metal Oxide Nanowire Sensors with Complex Morphologies and Compositions

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 2701 Accesses

Abstract

Metal oxide nanowire sensors with complex morphologies and compositions have shown promising properties due to their high surface-to-volume ratio and stable structures against agglomeration. In this chapter, a series of metal oxide nanostructures modified via surface coating, morphology variation, doping and appropriate energy band engineering have been investigated, and the sensing mechanism is discussed. By using nanostructures with complex morphologies and compositions in simple material synthesis routes, the structure of the sensitive material is modified, the electronic transport of the sensor is regulated and the sensing properties can be greatly improved, including enhancing the sensitivity and selectivity, lowering the working temperatures, reducing the response time and achieving long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang XJ, Choi YK (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671

    Article  Google Scholar 

  2. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Serveglieri G (2008) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67

    Article  Google Scholar 

  3. Comini E, Sberveglieri G (2010) Metal oxide nano wires as chemical sensors. Mater Today 13:36–44

    Article  CAS  Google Scholar 

  4. Fraden J (2004) Handbook of modern sensors: physics, designs, and applications. Springer, New York

    Google Scholar 

  5. Wan Q, Li QH, Chen YJ, Wang TH (2004) Fabrication and ethanol sensing characteristics of ZnO nano wire gas sensors. Appl Phys Lett 84:3654–3656

    Article  CAS  Google Scholar 

  6. Feng P, Wan Q, Wang TH (2005) Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl Phys Lett 87:213111

    Article  Google Scholar 

  7. Feng P, Xue XY, Liu YG, Wang TH (2006) Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact. Appl Phys Lett 89:243514

    Article  Google Scholar 

  8. Li CC, Du ZF, Li LM, Yu HC, Wan Q, Wang TH (2007) Surface-depletion controlled gas sensing of ZnO nano rods grown at room temperature. Appl Phys Lett 91:032101

    Article  Google Scholar 

  9. Xu CN, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155

    Article  Google Scholar 

  10. Hongsith N, Wongrat E, Kerdcharoen T, Choopun S (2010) Sensor response formula for sensor based on ZnO nanostructures. Sens Actuators B 144:67–72

    Article  Google Scholar 

  11. Göpel W, Schierbaum KD (1995) SnO2 sensors: current status and future prospects. Sens Actuators B 26:1–12

    Article  Google Scholar 

  12. Yamazoe N (2005) Toward innovations of gas sensor technology. Sens Actuators B 108:2–14

    Article  Google Scholar 

  13. Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87:222106

    Article  Google Scholar 

  14. Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5(4):667–673

    Article  CAS  Google Scholar 

  15. Shen YB, Yamazaki T, Liu ZF, Meng D, Kikuta T (2009) Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires. J Alloy Compd 488:21–25

    Article  Google Scholar 

  16. Liang YX, Chen YJ, Wang TH (2004) Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl Phys Lett 85:666–668

    Article  CAS  Google Scholar 

  17. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116

    Article  CAS  Google Scholar 

  18. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  19. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work function and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121

    Article  CAS  Google Scholar 

  20. Sinner-Hettenbach M, Gothelid M, Wei T, Barsan N, Weimar U, Schenck HV, Giovanelli L, Lay GL (2002) Electronic structure of SnO2(110)-4 × 1 and sputtered SnO2(110) revealed by resonant photoemission. Surf Sci 499:85–93

    Article  CAS  Google Scholar 

  21. Korotchenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B 107:209–232

    Article  Google Scholar 

  22. Lee JH (2009) Gas sensors using hierarchical and hollow oxide nanostructures overview. Sens. Actuators B 140:319–336

    Article  Google Scholar 

  23. Wan Q, Huang J, Xie Z, Wang TH, Dattoli EN, Lu W (2008) Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl Phys Lett 92:102101

    Article  Google Scholar 

  24. Li CC, Li LM, Du ZF, Yu HC, Xiang YY, Li Y, Cai Y, Wang TH (2008) Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19:035501

    Article  Google Scholar 

  25. Qian LH, Wang K, Li Y, Fang HT, Lu QH, Ma XL (2006) CO sensor based on Au-decorated SnO2 nanobelt. Mater Chem Phys 100:82–84

    Article  CAS  Google Scholar 

  26. Hongsith N, Viriyaworasakul C, Mangkorntong P, Mangkorntong N, Choopun S (2008) Ethanol sensor based on ZnO and Au-doped ZnO nanowires. Ceram Int 34:823–826

    Article  CAS  Google Scholar 

  27. Liu XH, Zhang J, Wang LW, Yang TL, Guo XZ, Wu SH, Wang SR (2011) 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensorsgas sensors. J Mater Chem 21:349–356

    Article  Google Scholar 

  28. Gao T, Wang TH (2004) Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell heterostructures. Chem Commun 22:2558–2559

    Article  Google Scholar 

  29. Xue XY, Xing LL, Chen YJ, Shi SL, Wang YG, Wang TH (2008) Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J Phys Chem C 112:12157–12160

    Article  CAS  Google Scholar 

  30. Shi SL, Liu YG, Chen YG, Zhang JY, Wang YG, Wang TH (2009) Ultrahigh ethanol response of SnO2 nanorods at low working temperature arising from La2O3 loading. Sens Actuators B 140:426–431

    Article  Google Scholar 

  31. Kovalenko VV, Zhukova AA, Rumyantseva MN, Gaskov AM, Yushchenko VV, Ivanova II, Pagnier T (2007) Surface chemistry of nanocrystalline SnO2 effect of thermal treatment and additives. Sens Actuators B 126:52–55

    Article  Google Scholar 

  32. Seiyama T, Shiokawa J, Suzuki S, Fueki K (1982) Kagaku sensa. Kodansha, Tokyo

    Google Scholar 

  33. Rumyantseva M, Kovalenko V, Gaskov A, Makshina E, Yuschenko V, Ivanova I, Ponzoni A, Faglia G, Comini E (2006) Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sens Actuators B 118:208–214

    Article  Google Scholar 

  34. Wan Q, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 30:3841–3843

    Article  Google Scholar 

  35. Xue XY, Chen YJ, Liu YG, Shi SL, Wang YG, Wang TH (2006) Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl Phys Lett 88:201907

    Article  Google Scholar 

  36. Xue XY, Chen YJ, Wang YG, Wang TH (2005) Synthesis and ethanol sensing properties of ZnSnO3 nanowires. Appl Phys Lett 86:233101

    Article  Google Scholar 

  37. Shen YS, Zhang TS (1993) Preparation, structure and gas-sensing properties of ultramicro ZnSnO3. Sens Actuators B 12:5–9

    Article  CAS  Google Scholar 

  38. Wu XH, Wang YD, Tian ZH, Liu HL, Zhou ZL, Li YF (2002) Study on ZnSnO3 sensitive material based on combustible gases. Solid-State Electron 46:715–719

    Article  CAS  Google Scholar 

  39. Chen YJ, Xue XY, Wang YG, Wang TH (2005) Synthesis and ethanol sensing characteristics of single crystal single crystalline SnO2 nanorods. Appl Phys Lett 87:233503

    Article  Google Scholar 

  40. Chen YJ, Nie L, Xue XY, Wang YG, Wang TH (2006) Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl Phys Lett 88:083105

    Article  Google Scholar 

  41. Yang Z, Li LM, Wan Q, Liu QH, Wang TH (2008) High-performance ethanol sensing based on an aligned assembly of ZnO nanorods. Sens Actuators B 135:57–60

    Article  Google Scholar 

  42. Gao T, Li QH, Wang TH (2005) Sonochemical synthesis, optical propertiesoptical properties, and electrical properties of core/shell-type ZnO nanorod/CdSCdS nanoparticle composites. Chem Mater 17:887–892

    Article  CAS  Google Scholar 

  43. Li LM, Du ZF, Wang TH (2010) Enhanced sensing properties of defect-controlled ZnO nanotetrapods arising from aluminum dopingdoping. Sens Actuators B 147:165–169

    Article  Google Scholar 

  44. Li LM, Li CC, Zhang J, Du ZF, Zou BS, Yu HC, Wang YG, Wang TH (2007) Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires. Nanotechnology 18:225504

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from “973” National Key Basic Research Program of China (Grant No. 2007CB310500), National Natural Science Foundation of China (Grant No. 21003041), and Hunan Provincial Natural Science Foundation of China (Grant No.10JJ1011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, Q., Mei, L., Zhuo, M., Zhang, M., Wang, T. (2013). Metal Oxide Nanowire Sensors with Complex Morphologies and Compositions. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_11

Download citation

Publish with us

Policies and ethics