ZnO Nanowires for Gas and Bio-Chemical Sensing

Part of the Integrated Analytical Systems book series (ANASYS)


There has been significant recent interest in the use of surface-functionalized thin film and nanowire ZnO for sensing of gases, heavy metals, UV photons and biological molecules. For the detection of gases such as hydrogen, the ZnO is typically coated with a catalyst metal such as Pd or Pt to increase the detection sensitivity at room temperature. Functionalizing the surface with oxides, polymers and nitrides is also useful in enhancing the detection sensitivity for gases and ionic solutions. The use of enzymes or adsorbed antibody layers on the ZnO surface leads to highly specific detection of a broad range of antigens of interest in the medical and homeland security fields. We give examples of recent work showing sensitive detection of glucose and lactic acid and the integration of the sensors with wireless data transmission systems to achieve robust, portable sensors.


Drain Current Exhale Breath Condensate Lactic Acid Concentration Gate Area Hydrogen Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work at UF was partially supported by ONR Grant N000140710982 monitored by Igor Vodyanoy, and the State of Florida, Center of Excellence in Nano-Bio Sensors.


  1. 1.
    Lu Y, Li J, Ng HT, Binder C, Partridge C, Meyyapan M (2004) Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett 391:344CrossRefGoogle Scholar
  2. 2.
    Hunter GW, Liu CC, Makel D (2001) Hak MG (ed) MEMS handbook. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897CrossRefGoogle Scholar
  4. 4.
    Lan ZH, Wang WM, Sun CL, Shi SC, Hsu CW, Chen TT, Chen KH, Chen CC, Chen YF, Chen LC (2004) Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods. J Cryst Growth 269:87CrossRefGoogle Scholar
  5. 5.
    Chang C, Chi GC, Wang W, Chen L, Chen KH, Ren F, Pearton SJ (2006) Electrical transport properties of single GaN and InN nanowires nanowires. J Electron Mater 35:738CrossRefGoogle Scholar
  6. 6.
    Chang C-Y, Lan T-W, Chi G-C, Chen L-C, Chen K-H, Chen J-J, Jang S, Ren F, Pearton SJ (2006) Effect of ozone cleaning and annealing on Ti/Al/Pt/Au ohmic contacts on GaN nanowires. Electrochem Solid-State Lett 9:G155CrossRefGoogle Scholar
  7. 7.
    Mehandru R, Luo B, Kang BS, Kim J, Ren F, Pearton SJ, Fan CC, Chen GT, Chyi JI (2004) AlGaN/GaN HEMTHEMT based liquid sensors. Solid State Electron 48:351CrossRefGoogle Scholar
  8. 8.
    Pearton SJ, Kang BS, Kim S, Ren F, Gila BP, Abernathy CR, Lin J, Chu SNG (2004) GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J Phys Condensed Matter 16:R961CrossRefGoogle Scholar
  9. 9.
    Park WI, Yi GC, Kim MY, Pennycook SJ (2003) Quantum confinement observed in ZnOZnO/ZnMgO nanorod heterostructures. Adv Mater 15:526CrossRefGoogle Scholar
  10. 10.
    Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP, Pearton SJ, Lin J (2005) Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl Phys Lett 86:243503CrossRefGoogle Scholar
  11. 11.
    Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote RJ, Thompson ME, Zhou C (2005) Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J Am Chem Soc 127:12484–12498CrossRefGoogle Scholar
  12. 12.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1296CrossRefGoogle Scholar
  13. 13.
    Wang B, Zhu LF, Yang YH, Xu NS, Yang GW (2008) Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J Phys Chem C 112:6643CrossRefGoogle Scholar
  14. 14.
    Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87:222106CrossRefGoogle Scholar
  15. 15.
    Tien LC, Wang HT, Kang BS, Ren F, Sadik PW, Norton DP, Pearton SJ, Lin J (2005) Room temperature hydrogen selective sensing using single Pt-coated ZnO nanowires at microwatt power levels. Electrochem Solid-State Lett 8:G239CrossRefGoogle Scholar
  16. 16.
    Wang ZL (2006) In: Jagadish C and Pearton SJ (eds) ZnO bulk, thin films and nanostructures. Elsevier, OxfordGoogle Scholar
  17. 17.
    Wollenstein J, Plaza JA, Cane C, Min Y, Bottner H, Tuller HL (2003) A novel single chip thin film metal oxide array, Sensor. Actuator B 93:350Google Scholar
  18. 18.
    Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP, Pearton SJ, Lin J (2005) Detection of hydrogen at room temperature with catalyst-coated multiple ZnO nanorods. Appl Phys A Mater Sci Proc 81:1117CrossRefGoogle Scholar
  19. 19.
    Donati S (2000) Photodetectors: devices, circuits, and applications. Prentice Hall, Upper Saddle RiverGoogle Scholar
  20. 20.
    Li YJ, Heo YW, Kwon Y, Ip K, Pearton SJ, Norton DP (2005) Transport properties of p-type phosphorus-doped (Zn, MgO) grown by pulsed-laser deposition. Appl Phys Lett 87:072101CrossRefGoogle Scholar
  21. 21.
    Yang H, Li Y, Norton DP, Ip K, Pearton SJ, Jang S, Ren F (2005) Low resistance ohmic contacts to p-ZnMgO grown by pulsed-laser deposition. Appl Phys Lett 86:192103CrossRefGoogle Scholar
  22. 22.
    Yang H, Li Y, Norton DP, Pearton SJ, Soohwan Jung, Ren F and Boatner LA (2005) Low resistance ohmic contacts to p-ZnMgO grown by pulsed-laser deposition. Appl Phys Lett 86:172103Google Scholar
  23. 23.
    Dong J, Osinsky A, Hertog B, Dabiran AM, Chow PP, Heo YW, Norton DP, Pearton SJ (2005) Development of MgZnO-ZnO-AlGaN heterostructures for ultraviolet light emitting applications. J Electron Mater 34:416CrossRefGoogle Scholar
  24. 24.
    LaRoche JR, Heo YW, Kang BS, Tien L, Kwon Y, Norton DP, Gila BP, Ren F, Pearton SJ (2005) Fabrication approaches to ZnO nanowire devices. J Electron Mater 34:404CrossRefGoogle Scholar
  25. 25.
    Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654CrossRefGoogle Scholar
  26. 26.
    Keem K, Kim H, Kim GT, Lee JS, Min B, Cho K, Sung MY, Kim S (2004) Photocurrent in ZnO nanowires grown from Au electrodes. Appl Phys Lett 84:4376CrossRefGoogle Scholar
  27. 27.
    Heo YW, Varadarjan V, Kaufman M, Kim K, Norton DP, Ren F, Fleming PH (2002) Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy. Appl Phys Lett 81:3046CrossRefGoogle Scholar
  28. 28.
    Norton DP, Heo YW, Ivill MP, K.Ip, Pearton SJ, Chisholm MF and Steiner T (2004) ZnO: growth, doping and processing. Materials Today, pp. 34–40Google Scholar
  29. 29.
    Koida T, Chichibu SF, Uedono A, Tsukazaki A, Kawasaki M, Sota T, Segewa Y, Koinuma H (2003) Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO. Appl Phys Lett 82:532CrossRefGoogle Scholar
  30. 30.
    Lopatiuk O, Burdett W, Chernyak L, Ip KP, Heo YW, Norton DP, Pearton SJ, Hertog B, Chow PP, Osinsky A (2005) Minority carrier transport in p-type ZnMgO doped with phosphorus. Appl Phys Lett 86:012105CrossRefGoogle Scholar
  31. 31.
    Shi GA, Saboktakin M, Stavola M, Pearton SJ (2004) Hidden Hydrogenn in as-grown ZnO. Appl Phys Lett 85:5601CrossRefGoogle Scholar
  32. 32.
    Kang BS, Heo YW, Tien LC, Norton DP, Ren F, Gila BP, Pearton SJ (2005) Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl Phys A 80:1029CrossRefGoogle Scholar
  33. 33.
    Studenikin SA, Golego N, Cocivera M (2000) Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. J Appl Phys 87:2413CrossRefGoogle Scholar
  34. 34.
    Kang BS, Ren F, Heo YW, Tien LC, Norton DP, Pearton SJ (2005) pH measurements with single ZnO nanorods integrated with a microchannel. Appl Phys Lett 86:112105CrossRefGoogle Scholar
  35. 35.
    Heo YW, Kang BS, Tien LC, Norton DP, Ren F, LaRoche JR, Pearton SJ (2005) UV photoresponse of single ZnO nanowires. Appl Phys A 80:497CrossRefGoogle Scholar
  36. 36.
    Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, LaRoche JR (2004) ZnO nanowire growth and devices. Mat Sci Eng R 47:1CrossRefGoogle Scholar
  37. 37.
    Sadik PW, Pearton SJ, Norton DP, Lambers E, Ren F (2007) Functionalizing Zn- and O-terminated ZnO with thiols. J Appl Phys 101:104514CrossRefGoogle Scholar
  38. 38.
    Dam TV, Anh W, Olthuis, Bergveld P (2005) A hydrogen peroxide sensor for exhaled breath measurement. Sensor Actuat B, 111/112(11):494Google Scholar
  39. 39.
    Multu GM (2001) Collection and analysis of exhaled breath condensate in humans. Am J Res Crit Care Med 164:731Google Scholar
  40. 40.
    Pearton SJ, Ren F, Yu-Lin Wang, Chu BH¸ Chen KH, Chang CY, Wantae Lim, Jenshan Lin, Norton DP (2010) Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science, 55:1Google Scholar
  41. 41.
    Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106CrossRefGoogle Scholar
  42. 42.
    Wei A, Sun XW, Wang JX, Lei Y, Cai XP, Li CM, Dong ZL, Huang W (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett 89:123902CrossRefGoogle Scholar
  43. 43.
    Phypers B, Pierce T (2006) Continuing education in anaesthesia. Crit Care Pain 6(3):128Google Scholar
  44. 44.
    Suman S, Singhal R, Sharma A, Malthotra BD, Pundir CS (2005) Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sens Actuators B 107:768CrossRefGoogle Scholar
  45. 45.
    Haccoun J, Piro B, Noël V, Pham MC (2006) The development of a reagent less lactate biosensor based on a novel conducting polymer. Bioelectrochemistry 68:218CrossRefGoogle Scholar
  46. 46.
    Di J, Cheng J, Xu Q, Zheng H, Zhuang J, Sun Y, Wang K, Mo X, Bi S (2007) Direct electrochemistry of lactate dehydrogenase immobilized on silica sol–gel modified gold electrode and its application. Biosens Bioelectron 23:682CrossRefGoogle Scholar
  47. 47.
    Lupu A, Valsesia A, Bretagnol F, Colpo P, Rossi F (2007) Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sens and Actuators B 127:606CrossRefGoogle Scholar
  48. 48.
    Lim W, Wright JS, Gila BP, Johnson JL, Ural A, Anderson T, Ren F, Pearton SJ (2008) Room temperature hydrogen detection using Pd-coated GaN nanowires. Appl Phys Lett 93:072110CrossRefGoogle Scholar
  49. 49.
    Lim W, Wright JS, Gila BP, Pearton SJ, Ren F, Lai W, Chen LC, Hu M, Chen KH (2008) Selective hydrogen sensing at room temperature with Pt-coated InN nanobelts. Appl Phys Lett 93:202109CrossRefGoogle Scholar
  50. 50.
    Wright J, Lim W, Norton DP, Ren F, Pearton SJ, Johnson J, Ural A (2010) Nitride and oxide semiconductor nanostructured hydrogen gas sensors. Semicond Sci Technol 25:024002CrossRefGoogle Scholar
  51. 51.
    Chu BH, Kang BS, Chang CY, Ren F, Goh A, Sciullo A, Wu W, Lin J, Gila BP, Pearton SJ, Johnson JW, Piner EL, Linthicum KJ (2010) Wireless detection system for glucose and pH sensing in exhaled breath condensate using AlGaN/GaN high electron mobility transistors. IEEE Sens J 10:64CrossRefGoogle Scholar
  52. 52.
    Anderson T, Fan Ren, Pearton SJ, Kang BS, Wang H-T, Chang C-Y and Lin J (2009) Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices. Sensors 9(6):4669Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stephen J. Pearton
    • 1
  • David P. Norton
    • 1
  • Fan Ren
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Chemical EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations