Skip to main content

Illustrating Optimal Control Applications with Discrete and Continuous Features

  • Chapter
Advances in Applied Mathematics, Modeling, and Computational Science

Part of the book series: Fields Institute Communications ((FIC,volume 66))

Abstract

In this paper, we present the basic idea of optimal control of models with discrete and continuous features. We first consider ordinary differential equation (ODE) models where we emphasize problems which are linear in the control and have discrete values for the optimal control. Three examples with ODEs illustrate how the bang-bang and singular controls could be handled. The first example utilizes a simple model with one ODE. The next two examples use systems of ODEs. One example comes from a mobile robot with one or more steerable drive wheels that steer together. The other example models species augmentation where two populations of the same species are modeled with a target/endangered population and a reserve population. Then we present an extension to an integrodifference model that is discrete in time and continuous in space. This optimal pest control problem is modeled by integrodifference equations and we illustrate how to construct the necessary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anita, S., Arnăutu, V., and Capasso, V.: An Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  2. Behncke, H.: Optimal control of deterministic dynamics. Optim. Control Appl. Methods 21, 269–285 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betts, J.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  4. Blackwood, J., Hastings, A., and Costello, C.: Cost-effective management of invasive species using linear-quadratic control. Ecol. Econ. 69, 519–527 (2010)

    Article  Google Scholar 

  5. Bodine, E. N., Gross, L. J., and Lenhart, S.: Optimal control applied to a model for species augmentation. Math. Biosci. Eng. 4, 669–680 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bryson, A. E., Jr, and Ho, Y.-c.: Applied Optimal Control. Ginn, Waltham (1969)

    Google Scholar 

  7. Clayton, T., Duke-Sylvester, S., Gross, L. J., Lenhart, S., and Real, L. A.: Optimal control of a rabies epidemic model with a birth pulse. J. Biol. Dyn. 4, 43–58 (2010).

    Article  MathSciNet  Google Scholar 

  8. dePillis, L. G., Gu, W., Fister, K. R., Head, T., Maples, K., Neal, T., Murugan, A., and Yoshida, K.: Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math. Biosci. 209, 292–315 (2007)

    Article  MathSciNet  Google Scholar 

  9. Epanchin-Neill, R. S., and Hastings, A.: Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13 (4), 528–541 (2010)

    Article  Google Scholar 

  10. Fleming, W., and Rishel, R.: Deterministic and Stochastic Optimal Controls. Springer, Berlin (1975)

    Book  Google Scholar 

  11. Fister, K. R., and Panetta, J. C.: Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J. Appl. Math. 63, 1954–1971 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gaff, H., Joshi, H.R., and Lenhart, S.: Optimal harvesting during an invasion of a sublethal plant pathogen. Environ. Dev. Econ. J. 12, 673–686 (2007)

    Google Scholar 

  13. Georgescu, P., Dimitriu, G., and Sinclair, R.: Impulsive control of an integrated pest management model with dispersal between patches. J. Biol. Syst. 18(3), 535–569 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hackbusch, W.: A numerical method for solving parabolic equations with opposite orientations. Computing 20, 229–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hawkins, B. A., and Cornell, H. V.: Theoretical Approaches to Biological Control. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  16. Heinricher, A., Lenhart, S., and Solomon, A.: The application of optimal control methodology to a well-stirred bioreactor. Nat. Resour. Model. 9, 61–80 (1995)

    MATH  Google Scholar 

  17. Hof, J., and Bevers, M.: Spatial Optimization in Ecological Applications. Columbia University Press, New York (2002)

    Google Scholar 

  18. Joshi, H. R., Lenhart, S., and Gaff, H.: Optimal harvesting in an integrodifference population model. Optim. Control Appl. Methods 27, 135–157 (2006)

    Article  MathSciNet  Google Scholar 

  19. Joshi, H. R., Lenhart, S., Gaff, H., and Lou, H.: Harvesting control in an integrodifference population model with concave growth term. Nonlinear Anal. Hybrid Syst. 3, 417–429 (2007)

    Article  MathSciNet  Google Scholar 

  20. Krabs W., and Pickl, S.: Modelling, Analysis and Optimization of Biosystems. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Kern, D. L., Lenhart, S., Miller, R., and Yong, J.: Optimal Control applied to native-invasive population dynamics. J. Biol. Dyn. 1 (4), 379–393 (2007)

    Article  MathSciNet  Google Scholar 

  22. Kot, M., and Schaffer, W. M.: Discrete-Time Growth-Dispersal Models. Math. Biosci. 80, 109–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kot, M.: Discrete-time travelling waves: ecological examples. J. Math. Biol. 30, 413–436 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kot, M., Lewis, M. A., and van den Driessche, P.: Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996)

    Article  Google Scholar 

  25. Kot, M. : Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  26. Krener, A. J.: The high order maximal principle and it’s application to singular extremals. SIAM J. Control Optim. 15, 256–293 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ledzewicz, U., and Schattler, H.: Second order conditions for extremum problems with nonregular equality constraints. J. Optim. Theory Appl. 86, 113–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ledzewicz, U., Brown, T., and Schattler, H.: A comparison of optimal controls for a model in cancer chemotherapy with L 1- and L 2- type objectives. Optim. Methods Softw. 19, 351–359 (2004)

    Article  MathSciNet  Google Scholar 

  29. Lenhart, S., and Workman, J. T.: Optimal Control of Biological Models. Chapman and Hall/CRC Publishers, London/Boca Raton (2007)

    Google Scholar 

  30. Lenhart, S., and Zhong, P.: Investigating the order of events in optimal control of integrodifference equations. In Systems Theory: Modeling, Analysis and Control Proceedings Volume, 89–100 (2009). Presses Universitaires de Perpignan, France

    Google Scholar 

  31. Lewis, M. A., and Van Kirk, R. W.: Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59, 107–137 (1997)

    MATH  Google Scholar 

  32. Li, H., and Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhauser, Boston (1995)

    Book  Google Scholar 

  33. Mesterson-Gibbons, M.: A primer on the Calculus of Variations and Optimal Control Theory. Student Mathematical Library 50, AMS, Providence (2009)

    Google Scholar 

  34. Neubert, M., Kot, M., and Lewis, M. A.: Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48, 7–43 (1995)

    Article  MATH  Google Scholar 

  35. Neubert, M.: Marine reserves and optimal harvesting. Ecol. Lett. 6, 843–849 (2003)

    Article  Google Scholar 

  36. Olson, L.: The economics of terrestrial invasive species: a review of the literature. Agric. Resour. Econ. Rev. 35, 178–194 (2006)

    Google Scholar 

  37. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1967)

    Google Scholar 

  38. Railsback, S. F., and Grimm, V.: Agent-based and individual-based modeling: a practical introduction. Princeton University Press, Princeton (2012)

    Google Scholar 

  39. Reister, D. B.: A new wheel control system for the omnidirectional HERMIES-III robot. Robotica 10, 351–360 (1992)

    Article  Google Scholar 

  40. Reister, D. B., and Lenhart, S. M.: Time optimal paths for high-speed maneuvering. Int. J. Robot. Res. 14, 184–194 (1995)

    Article  Google Scholar 

  41. Salinas, R. A., Lenhart, S., and Gross, L. J.: Control of a metapopulation harvesting model for black bears. Nat. Resour. Model. 18, 307–321 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sethi, S. P., and Thompson, G. L.: Optimal Control Theory: Applications to Management Science and Economics. Kluwer Academic, Boston, 2nd edn. (2000)

    MATH  Google Scholar 

  43. Speyer, J. L., and Jacobson D. H.: Primer on Control Theory. Advances in Design and Control. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  44. Troelzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Am. Math. Soc., Providence (2010)

    Google Scholar 

  45. Whittle, A., Lenhart, S., and Gross, L. T.: Optimal control for management of an invasive plant species. Math. Biosci. Eng. 4, 101–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, T., Meng, X., and Song, Y.: The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments. Nonlinear Dyn. 64(1–2), 1–12 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Lenhart’s work is partially supported by the National Institute for Mathematical and Biological Synthesis funded through the National Science Foundation EF0832858. We would like to thank David Reister and Louis Gross for some assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lenhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lenhart, S., Bodine, E., Zhong, P., Joshi, H.R. (2013). Illustrating Optimal Control Applications with Discrete and Continuous Features. In: Melnik, R., Kotsireas, I. (eds) Advances in Applied Mathematics, Modeling, and Computational Science. Fields Institute Communications, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5389-5_9

Download citation

Publish with us

Policies and ethics