Skip to main content

A Multiscale Method Coupling Network and Continuum Models in Porous Media II—Single- and Two-Phase Flows

  • Chapter
Advances in Applied Mathematics, Modeling, and Computational Science

Part of the book series: Fields Institute Communications ((FIC,volume 66))

Abstract

We present a numerical multiscale method for coupling mass conservation laws at the continuum scale with a discrete, pore scale network model for two-phase flow in porous media. Our previously developed single-phase flow algorithm is extended to two-phase flows, for the situations in which the saturation profile go through a sharp transition from fully saturated to almost unsaturated states. Our method evaluates the continuum equation by simulations using small representative networks centering at different physical locations, and thereby computes the effective dynamics of the two phase flow at the continuum scale. On the other hand, the initial and boundary data for the network simulations are determined by the variables used in the continuum model. We present numerical results for single-phase flows with nonlinear flux-pressure dependence, as well as two-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Arbogast. Gravitational forces in dual-porosity systems: 1. Model derivation by homogenization. Transp. Porous Media, 13(2) (1993), 179–203.

    Article  Google Scholar 

  2. T. Arbogast. Gravitational forces in dual-porosity systems: 2. Computational validation of the homogenized model. Transp. Porous Media, 13(2) (1993), 205–220.

    Article  Google Scholar 

  3. T. Arbogast, L.C. Cowsar, M.F. Wheeler, and I. Yotov. Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal., 37(4) (2000), 1295–1315.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.T. Balhoff, K.E. Thompson, and M. Hjortso. Coupling pore-scale networks to continuum-scale models of porous media. Comput. Geosci., 33(3) (2007), 393–410.

    Article  Google Scholar 

  5. M. Balhoff, S. Thomas, and M. Wheeler. Mortar coupling and upscaling of pore-scale models. Comput. Geosci., 12 (2008), 15–27. doi:10.1007/s10596-007-9058-6.

    Article  MathSciNet  MATH  Google Scholar 

  6. M.J. Blunt. Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci., 6 (2001), 197–207.

    Article  Google Scholar 

  7. M.J. Blunt, M.D. Jackson, M. Piri, and P.H. Valvatne. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour., 25 (2002), 1069–1089.

    Article  Google Scholar 

  8. S.L. Bryant, P.R. King, and D.W. Mellor. Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Media, 11 (1993), 53–70.

    Article  Google Scholar 

  9. M.A. Celia, P.C. Reeves, and L.A. Ferrand. Recent advances in pore-scale models for multiphase flow in porous media. Rev. Geophys. Suppl., 33 (1995), 1049–1057.

    Article  Google Scholar 

  10. Y. Chen and L.J. Durlofsky. An adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media, 62 (2006), 157–185.

    Article  MathSciNet  Google Scholar 

  11. Y. Chen and L.J. Durlofsky. Efficient incorporation of global effects in upscaled models of two-phase flow and transport in heterogeneous formations. SIAM MMS, 5 (2006), 445–475.

    MathSciNet  MATH  Google Scholar 

  12. Y. Chen, L.J. Durlofsky, M. Gerritsen, and X.H. Wen. A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour., 26 (2003), 1041–1060.

    Article  Google Scholar 

  13. Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase flows in porous media. Computational Science & Engineering. SIAM, Philadelphia, 2006.

    Book  MATH  Google Scholar 

  14. J. Chu, B. Engquist, M. Prodanović, and R. Tsai. A multiscale method coupling network and continuum models in porous media I—steady state single phase flow. To appear in SIAM Multiscale Model. Simul. doi:10.1137/110836201.

    Google Scholar 

  15. A.B. Dixit, J.S. Buckley, S.R. McDougall, and K.S. Sorbie. Empirical measures of wettability in porous media and the relationship between them derived from pore-scale modelling. Transp. Porous Media, 40 (2000), 27–54.

    Article  Google Scholar 

  16. L.J. Durlofsky, Y. Efendiev, and V. Ginting. An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv. Water Resour., 30 (2007), 576–588.

    Article  Google Scholar 

  17. W. E and B. Engquist. The heterogeneous multi-scale methods. Commun. Math. Sci., 1(1) (2003), 87–133.

    MathSciNet  MATH  Google Scholar 

  18. Y. Efendiev, V. Ginting, T.Y. Hou, and R. Ewing. Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys., 220(1) (2006), 155–174.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Efendiev and T.Y. Hou. Multiscale finite element methods: theory and applications. Springer, New York, 2009.

    MATH  Google Scholar 

  20. B. Engquist, R. Caflisch, and Y. Sun. A multiscale method for epitaxial growth. SIAM MMS, 9(1) (2011), 335–354.

    MathSciNet  MATH  Google Scholar 

  21. B. Engquist and Y. Sun. Heterogeneous multiscale methods for interface tracking of combustion fronts. SIAM MMS, 5(2) (2006), 532–563.

    MathSciNet  MATH  Google Scholar 

  22. I. Fatt. The network model of porous media I. Capillary characteristics. Pet. Trans. AIME, 207 (1956), 144–159.

    Google Scholar 

  23. I. Fatt. The network model of porous media II. Dynamic properties of a single size tube network. Pet. Trans. AIME, 207 (1956), 160–163.

    Google Scholar 

  24. I. Fatt. The network model of porous media III. Dynamic properties of networks with tube radius distribution. Pet. Trans. AIME, 207 (1956), 164–181.

    Google Scholar 

  25. P. Forchheimer. Hydrolik. Teubner, Leipzig, 1914.

    Google Scholar 

  26. V. Joekar-Niasar, S.M. Hassanizadeh and H.K. Dahle. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. J. Fluid Mech., 655 (2010), 38–71.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Karimi-Fard, B. Gong, and L. J. Durlofsky. Generation of coarse-scale continuum flow models from detailed fracture characterization. Water Resour. Res., 42(10) (2006). doi:10.1029/2006WR005015.

    Article  Google Scholar 

  28. J.E. Olson, S.E. Laubach, and R.H. Lander. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis. Am. Assoc. Pet. Geol. Bull., 93(11) (2009), 1535–1549.

    Google Scholar 

  29. P.E. Oren and S. Bakke. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng., 39 (2003), 177–199.

    Article  Google Scholar 

  30. V. Joekar-Niasar, M. Prodanović, D. Wildenschild, and S.M. Hassanizadeh. Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resour. Res., 46(6) (2010), WR008585.

    Article  Google Scholar 

  31. P.C. Reeves and M.A. Celia. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore scale network model. Water Resour. Res., 32 (1996), 2345–2358.

    Article  Google Scholar 

  32. F.D. Rossa, C. D’Angelo, and A. Quarteroni. A distributed model of traffic flows on extended regions. Netw. Heterog. Media, 5(3) (2010), 525–544.

    Article  MathSciNet  Google Scholar 

  33. F. Thauvin and K.K. Mohanty. Network modeling of non-darcy flow through porous media. Transp. Porous Media, 31 (1998), 19–37.

    Article  Google Scholar 

  34. K.E. Thompson. Pore-scale modelling of fluid transport in disordered fibrous materials. AIChE J., 48 (2002), 1369–1389.

    Article  Google Scholar 

  35. P.H. Valvatne and M.J. Blunt. Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res., 40 (2004). doi:10.1029/2003WR002627.

  36. M.I.J. van Dijke, K.S. Sorbie, and S.R. McDougall. Saturation-dependencies of three-phase relative permeabilities in mixed-wet and fractionally wet systems. Adv. Water Resour., 24 (2001), 365–384.

    Article  Google Scholar 

  37. X. Wang and K.K. Mohanty. Pore-network model of flow in gas-condensate reservoirs. SPE J., 5 (2000), 426–434.

    Google Scholar 

  38. S. Whitaker. Flow in porous media i: a theoretical derivation of Darcy’s law. Transp. Porous Media, 1 (1986), 3–25.

    Article  Google Scholar 

  39. S. Youssef, M. Han, D. Bauer, E. Rosenberg, S. Bekri, M. Fleury, and O. Vizika. High resolution μCT combined to numerical models to assess electrical properties of bimodal carbonates. Abu Dhabi, UAE, 29 October–2 November, 2008.

    Google Scholar 

  40. D. Zhou, M.J. Blunt, and F.M. Orr. Hydrocarbon drainage along corners of noncircular capillaries. J. Colloid Interface Sci., 187 (1997), 11–21.

    Article  Google Scholar 

Download references

Acknowledgements

Chu and Tsai are partially supported by NSF DMS-0714612, and NSF DMS-0914840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chu, J., Engquist, B., Prodanović, M., Tsai, R. (2013). A Multiscale Method Coupling Network and Continuum Models in Porous Media II—Single- and Two-Phase Flows. In: Melnik, R., Kotsireas, I. (eds) Advances in Applied Mathematics, Modeling, and Computational Science. Fields Institute Communications, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5389-5_7

Download citation

Publish with us

Policies and ethics