Blaschke Products and Their Applications pp 43-98 | Cite as
A Survey on Blaschke-Oscillatory Differential Equations, with Updates
- 4 Citations
- 888 Downloads
Abstract
Since 1949 a number of papers provide with different types of growth conditions on the coefficient A(z) such that the solutions of (†) have at most finitely many zeros in \(\mathbb{D}\). If there exists at least one solution with infinitely many zeros in \(\mathbb{D}\), then (†) is oscillatory. If the zeros still satisfy the classical Blaschke condition, then (†) is called Blaschke-oscillatory. This concept was introduced by the author in 2005, but the topic was considered by Hartman and Wintner already in 1955 (Trans. Am. Math. Soc. 78:492–500). This semi-survey paper provides with a collection of results and tools dealing with Blaschke-oscillatory equations.
As for results, necessary and sufficient conditions are given, and notable effort has been put in dealing with prescribed zero sequences satisfying the Blaschke condition. The concept of Blaschke-oscillation also extends to differential equations of arbitrary order. Many of the results given in this paper have been published earlier in a weaker form. All questions regarding the zeros of solutions can be rephrased for the critical points of solutions. This gives rise to a new concept called Blaschke-critical equations. To intrigue the reader, several open problems are pointed out in the text.
Some classical tools and closely related topics that are often related to the finite oscillation case include the Schwarzian derivative, properties of univalent functions, Green’s identity, conformal mappings, and a certain Hardy-Littlewood inequality. The Blaschke-oscillatory case also makes use of interpolation theory, various growth estimates for logarithmic derivatives of Blaschke products, Bank-Laine functions and recently updated Wiman-Valiron theory.
Keywords
Blaschke-critical Blaschke-oscillatory Blaschke product Differential equation Logarithmic derivative Oscillation theory Prescribed zeros Zero sequenceMathematics Subject Classification
34M10 30J10 30H15References
- 1.Aulaskari, R., Nowak, M., Zhao, R.: The nth derivative characterisation of Möbius invariant Dirichlet space. Bull. Aust. Math. Soc. 58(1), 43–56 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Aulaskari, R., Xiao, J., Zhao, R.: On subspaces and subsets of BMOA and UBC. Analysis 15(2), 101–121 (1995) MathSciNetzbMATHGoogle Scholar
- 3.Bank, S.: A general theorem concerning the growth of solutions of first-order algebraic differential equations. Compos. Math. 25, 61–70 (1972) MathSciNetzbMATHGoogle Scholar
- 4.Bank, S., Laine, I.: On the oscillation theory of f″+Af=0 where A is entire. Trans. Am. Math. Soc. 273(1), 351–363 (1982) MathSciNetzbMATHGoogle Scholar
- 5.Buckley, S., Koskela, P., Vukotic, D.: Fractional integration, differentiation, and weighted Bergman spaces. Math. Proc. Camb. Philos. Soc. 126(2), 369–385 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Carmona, J., Cufi, J., Pommerenke, Ch.: On the angular limits of Bloch functions. Publ. Mat. 32(2), 191–198 (1988) MathSciNetzbMATHGoogle Scholar
- 7.Chuaqui, M., Duren, P., Osgood, B.: Schwarzian derivatives of convex mappings. Ann. Acad. Sci. Fenn. Math. 36, 449–460 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Chuaqui, M., Duren, P., Osgood, B., Stowe, D.: Oscillation of solutions of linear differential equations. Bull. Aust. Math. Soc. 79(1), 161–169 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Chuaqui, M., Stowe, D.: Valence and oscillation of functions in the unit disk. Ann. Acad. Sci. Fenn. Math. 33(2), 561–584 (2008) MathSciNetzbMATHGoogle Scholar
- 10.Chyzhykov, I., Gundersen, G.G., Heittokangas, J.: Linear differential equations and logarithmic derivative estimates. Proc. Lond. Math. Soc. 86(3), 735–754 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Chyzhykov, I., Heittokangas, J., Rättyä, J.: Finiteness of φ-order of solutions of linear differential equations in the unit disc. J. Anal. Math. 109(1), 163–198 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Cima, J., Colwell, P.: Blaschke quotients and normality. Proc. Am. Math. Soc. 19, 796–798 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Cima, J., Pfaltzgraff, J.: Oscillatory behavior of u″(z)+h(z)u(z)=0 for univalent h(z). J. Anal. Math. 25, 311–322 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Clunie, J.: The derivative of a meromorphic function. Proc. Am. Math. Soc. 7, 227–229 (1956) MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Duren, P.: Theory of H p Spaces. Academic Press, New York (1970) zbMATHGoogle Scholar
- 16.Duren, P., Romberg, B., Shields, A.: Linear functionals on H p spaces with 0<p<1. J. Reine Angew. Math. 238, 32–60 (1969) MathSciNetzbMATHGoogle Scholar
- 17.Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs, vol. 100. Am. Math. Soc., Providence (2004) zbMATHGoogle Scholar
- 18.Essén, M., Xiao, J.: Some results on Q p spaces, 0<p<1. J. Reine Angew. Math. 485, 173–195 (1997) MathSciNetzbMATHGoogle Scholar
- 19.Fenton, P., Rossi, J.: ODEs and Wiman-Valiron theory in the unit disc. J. Math. Anal. Appl. 367(1), 137–145 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Fricain, E., Mashreghi, J.: Exceptional sets for the derivatives of Blaschke products. In: Proceedings of the St. Petersburg Mathematical Society. Vol. XIII. Amer. Math. Soc. Transl. Ser. 2, vol. 222, pp. 163–170. Am. Math. Soc., Providence (2008) Google Scholar
- 21.Fricain, E., Mashreghi, J.: Integral means of the derivatives of Blaschke products. Glasg. Math. J. 50(2), 233–249 (2008) MathSciNetzbMATHGoogle Scholar
- 22.Girela, D., Peláez, J., Pérez-González, F., Rättyä, J.: Carleson measures for the Bloch space. Integral Equ. Oper. Theory 61(4), 511–547 (2008) zbMATHCrossRefGoogle Scholar
- 23.Girela, D., Peláez, J., Vukotic’, D.: Integrability of the derivative of a Blaschke product. Proc. Edinb. Math. Soc. (2) 50(3), 673–687 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Girela, D., Peláez, J., Vukotic’, D.: Uniformly discrete sequences in regions with tangential approach to the unit circle. Complex Var. Elliptic Equ. 52(2–3), 161–173 (2007) MathSciNetzbMATHGoogle Scholar
- 25.Gnuschke-Hauschild, D., Pommerenke, Ch.: On Bloch functions and gap series. J. Reine Angew. Math. 367, 172–186 (1986) MathSciNetzbMATHGoogle Scholar
- 26.Gotoh, Y.: On integral means of the derivatives of Blaschke products. Kodai Math. J. 30(1), 147–155 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Gröhn, J., Heittokangas, J.: New findings on Bank-Sauer approach in oscillation theory. Constr. Approx. 35, 345–361 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Hartman, P., Wintner, A.: On linear second order differential equations in the unit circle. Trans. Am. Math. Soc. 78, 492–500 (1955) MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Hayman, W.K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964) zbMATHGoogle Scholar
- 30.Hayman, W.K.: On the characteristic of functions meromorphic in the unit disk and of their integrals. Acta Math. 112, 181–214 (1964) MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Hayman, W.K.: Multivalent Functions, 2nd edn. Cambridge Tracts in Mathematics, vol. 110. Cambridge University Press, Cambridge (1994) zbMATHCrossRefGoogle Scholar
- 32.Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer, New York (2000) zbMATHCrossRefGoogle Scholar
- 33.Heittokangas, J.: On complex differential equations in the unit disc. Ann. Acad. Sci. Fenn. Math. Diss. 122, 1–54 (2000) MathSciNetGoogle Scholar
- 34.Heittokangas, J.: Solutions of f″+A(z)f=0 in the unit disc having Blaschke sequences as the zeros. Comput. Methods Funct. Theory 5(1), 49–63 (2005) MathSciNetzbMATHGoogle Scholar
- 35.Heittokangas, J.: Blaschke-oscillatory equations of the form f″+A(z)f=0. J. Math. Anal. Appl. 318(1), 120–133 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Heittokangas, J.: Growth estimates for logarithmic derivatives of Blaschke products and of functions in the Nevanlinna class. Kodai Math. J. 30, 263–279 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Heittokangas, J.: On interpolating Blaschke products and Blaschke-oscillatory equations. Constr. Approx. 34(1), 1–21 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Heittokangas, J., Korhonen, R., Rättyä, J.: Growth estimates for solutions of linear complex differential equations. Ann. Acad. Sci. Fenn. 29(1), 233–246 (2004) MathSciNetzbMATHGoogle Scholar
- 39.Heittokangas, J., Korhonen, R., Rättyä, J.: Linear differential equations with solutions in the Dirichlet type subspace of the Hardy space. Nagoya Math. J. 187, 91–113 (2007) MathSciNetzbMATHGoogle Scholar
- 40.Heittokangas, J., Korhonen, R., Rättyä, J.: Linear differential equations with coefficients in weighted Bergman and Hardy spaces. Trans. Am. Math. Soc. 360(2), 1035–1055 (2008) zbMATHCrossRefGoogle Scholar
- 41.Heittokangas, J., Korhonen, R., Rättyä, J.: Growth estimates for solutions of nonhomogeneous linear differential equations. Ann. Acad. Sci. Fenn. 34(1), 145–156 (2009) MathSciNetzbMATHGoogle Scholar
- 42.Heittokangas, J., Laine, I.: Solutions of f″+A(z)f=0 with prescribed sequences of zeros. Acta Math. Univ. Comen. 124(2), 287–307 (2005) MathSciNetGoogle Scholar
- 43.Heittokangas, J., Rättyä, J.: Zero distribution of solutions of complex linear differential equations determines growth of coefficients. Math. Nachr. 284(4), 412–420 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Heittokangas, J., Tohge, K.: A unit disc analogue of the Bank-Laine conjecture does not hold. Ann. Acad. Sci. Fenn. 36(1), 341–351 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Herold, H.: Nichteuklidischer Nullstellenabstand der Lösungen von w″+p(z)w=0. Math. Ann. 287, 637–642 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Hille, E.: Remarks on a paper by Zeev Nehari. Bull. Am. Math. Soc. 55, 552–553 (1949) MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Horowitz, C.: Factorization theorems for functions in the Bergman spaces. Duke Math. J. 44(1), 201–213 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Ince, E.: Ordinary Differential Equations. Dover, New York (1956) Google Scholar
- 49.Juneja, O., Kapoor, G.: Analytic Functions—Growth Aspects. Research Notes in Mathematics, vol. 104. Pitman Adv. Publ. Prog., Boston (1985) zbMATHGoogle Scholar
- 50.Kim, H.: Derivatives of Blaschke products. Pac. J. Math. 114(1), 175–190 (1984) zbMATHGoogle Scholar
- 51.Kim, W.: The Schwarzian derivative and multivalence. Pac. J. Math. 31, 717–724 (1969) zbMATHGoogle Scholar
- 52.Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135(3–4), 187–219 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
- 53.Korhonen, R., Rättyä, J.: Finite order solutions of linear differential equations in the unit disc. J. Math. Anal. Appl. 349(1), 43–54 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 54.Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993) CrossRefGoogle Scholar
- 55.Laine, I.: Complex differential equations. In: Handbook of Differential Equations: Ordinary Differential Equations. Vol. IV. Handb. Differ. Equ., pp. 269–363. Elsevier/North-Holland, Amsterdam (2008) (English summary) Google Scholar
- 56.Linden, C.: H p-derivatives of Blaschke products. Mich. Math. J. 23, 43–51 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
- 57.London, D.: On the zeros of solutions of w″(z)+p(z)w(z)=0. Pac. J. Math. 12, 979–991 (1962) MathSciNetzbMATHGoogle Scholar
- 58.Mashreghi, J., Shabankhah, M.: Integral means of the logarithmic derivative of Blaschke products. Comput. Methods Funct. Theory 9(2), 421–433 (2009) MathSciNetzbMATHGoogle Scholar
- 59.Nehari, Z.: The Schwarzian derivative and Schlicht functions. Bull. Am. Math. Soc. 55, 545–551 (1949) MathSciNetzbMATHCrossRefGoogle Scholar
- 60.Nehari, Z.: Conformal Mapping. Dover, New York (1975). Reprinting of the 1952 edn. Google Scholar
- 61.Nevanlinna, R.: Analytic Functions. Die Grundlehren der mathematischen Wissenschaften, vol. 162. Springer, New York (1970). Translated from the second German edn. by Phillip Emig zbMATHGoogle Scholar
- 62.Nolder, C.: An L p definition of interpolating Blaschke products. Proc. Am. Math. Soc. 128(6), 1799–1806 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
- 63.Pascuas, D.: A note on interpolation by Bloch functions. Proc. Am. Math. Soc. 135(7), 2127–2130 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 64.Peláez, J.: Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Math. 20(6), 1039–1054 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 65.Peláez, J., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. (to appear) Google Scholar
- 66.Pommerenke, Ch.: Univalent Functions. Studia Mathematica/Mathematische Lehrbücher, vol. XXV. Vandenhoeck & Ruprecht, Göttingen (1975). With a chapter on quadratic differentials by Gerd Jensen zbMATHGoogle Scholar
- 67.Pommerenke, Ch.: On the mean growth of the solutions of complex linear differential equations in the disk. Complex Var. Theory Appl. 1(1), 23–38 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
- 68.Protas, D.: Blaschke products with derivative in H p and B p. Mich. Math. J. 20, 393–396 (1973) MathSciNetzbMATHGoogle Scholar
- 69.Rättyä, J.: Linear differential equations with solutions in Hardy spaces. Complex Var. Elliptic Equ. 52(9), 785–795 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 70.Schwarz, B.: Complex nonoscillation theorems and criteria of univalence. Trans. Am. Math. Soc. 80, 159–186 (1955) zbMATHCrossRefGoogle Scholar
- 71.Šeda, V.: A note to a paper by Clunie. Acta Fac. Nat. Univ. Comen. 4, 255–260 (1959) zbMATHGoogle Scholar
- 72.Šeda, V.: On some properties of solutions of the differential equation y″=Q(z)y, where Q(z)≠0 is an entire function. Acta Fac. Nat. Univ. Comen. Math. 4, 223–253 (1959) (Slovak) zbMATHGoogle Scholar
- 73.Shea, D., Sons, L.: Value distribution theory for meromorphic functions of slow growth in the disk. Houst. J. Math. 12(2), 249–266 (1986) MathSciNetzbMATHGoogle Scholar
- 74.Tse, K.-F.: Nontangential interpolating sequences and interpolation by normal functions. Proc. Am. Math. Soc. 29, 351–354 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
- 75.Tsuji, M.: Potential Theory in Modern Function Theory. Chelsea, New York (1975). Reprinting of the 1959 edn. zbMATHGoogle Scholar
- 76.Yamashita, S.: Gap series and α-Bloch functions. Yokohama Math. J. 28, 31–36 (1980) MathSciNetzbMATHGoogle Scholar
- 77.Zabulionis, A.: Separation of points of the unit disc. Lith. Math. J. 23(3), 271–274 (1983) MathSciNetzbMATHCrossRefGoogle Scholar