Blaschke Products and Their Applications pp 249-273 | Cite as
Polynomials Versus Finite Blaschke Products
Chapter
- 3 Citations
- 1k Downloads
Abstract
The aim of this chapter is to compare polynomials of one complex variable and finite Blaschke products and demonstrate that they share many similar properties. In fact, we collect many known results as well as some very recent results for finite Blaschke products here to establish a dictionary between polynomials and finite Blaschke products.
Keywords
Polynomials Finite Blaschke products Ritt’s theorems Chebyshev polynomials ApproximationMathematics Subject Classification
30J10 30C10 30E10 30D05 39B12Notes
Acknowledgements
The first author was partially supported by RGC grant HKU 704409P. The second author was partially supported by graduate studentship of HKU and RGC grant HKU 704409P.
References
- 1.Adams, W.W., Straus, E.G.: Non-Archimedean analytic functions taking the same values at the same points. Ill. J. Math. 15, 418–424 (1971) MathSciNetzbMATHGoogle Scholar
- 2.Akhiezer, N.I.: Elements of the Theory of Elliptic Functions. AMS, Providence (1990) zbMATHGoogle Scholar
- 3.Beardon, A.F.: Iteration of Rational Functions. Springer, Berlin (1991) zbMATHCrossRefGoogle Scholar
- 4.Beardon, A.F., Carne, T.K., Ng, T.W.: The critical values of a polynomial. Constr. Approx. 18, 343–354 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Beardon, A.F., Minda, D.: A multi-point Schwarz-Pick lemma. J. Anal. Math. 92, 81–104 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Beardon, A.F., Minda, D., Ng, T.W.: Smale’s mean value conjecture and the hyperbolic metric. Math. Ann. 322, 623–632 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics, vol. 161. Springer, New York (1995) zbMATHCrossRefGoogle Scholar
- 8.Carleson, L., Gamelin, T.W.: Complex Dynamics. Springer, Berlin (1993) zbMATHCrossRefGoogle Scholar
- 9.Chandrasekharan, K.: Elliptic Functions. Springer, Berlin (1985) zbMATHGoogle Scholar
- 10.Conte, A., Fujikawa, E., Lakic, N.: Smale’s mean value conjecture and the coefficients of univalent functions. Proc. Am. Math. Soc. 135, 3295–3300 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Crane, E.: A bound for Smale’s mean value conjecture for complex polynomials. Bull. Lond. Math. Soc. 39, 781–791 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Dinh, T.C.: Ensembles d’unicité pour les polynômes. Ergod. Theory Dyn. Syst. 22(1), 171–186 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Dinh, T.C.: Distribution des préimages et des points périodiques d’une correspondance polynomiale. Bull. Soc. Math. Fr. 133, 363–394 (2005) MathSciNetzbMATHGoogle Scholar
- 14.Farkas, H.M., Kra, I.: Theta Constants, Riemann Surfaces and the Modular Group. Grad. Stud. Math., vol. 37. Am. Math. Soc., Providence (2001) zbMATHGoogle Scholar
- 15.Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. Fr. 47, 161–271 (1919) MathSciNetzbMATHGoogle Scholar
- 16.Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. Fr. 48, 33–94 (1920) MathSciNetGoogle Scholar
- 17.Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. Fr. 48, 208–314 (1920) MathSciNetGoogle Scholar
- 18.Fatou, P.: Sur les fonctions holomorphes et bornées à l’intérieur d’uncercle. Bull. Soc. Math. Fr. 51, 191–202 (1923) MathSciNetzbMATHGoogle Scholar
- 19.Forster, O.: Lectures on Riemann Surfaces. Springer, New York (1991) Google Scholar
- 20.Fujikawa, E., Sugawa, T.: Geometric function theory and Smale’s mean value conjecture. Proc. Jpn. Acad., Ser. A, Math. Sci. 82, 97–100 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Garnett, J.B.: Bounded Analytic Functions. Grad. Texts in Math., vol. 236. Springer, New York (2007) Google Scholar
- 22.Gonchar, A.A.: Zolotarev problems connected with rational functions. Math. USSR Sb. 7, 623–635 (1969) zbMATHCrossRefGoogle Scholar
- 23.Hinkkanen, A., Kayumov, I.: Smale’s problem for critical points on certain two rays. J. Aust. Math. Soc. 88, 183–191 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Horwitz, A.L., Rubel, L.A.: A uniqueness theorem for monic Blaschke products. Proc. Am. Math. Soc. 96, 180–182 (1986) MathSciNetzbMATHGoogle Scholar
- 25.Istace, M.P., Thiran, J.P.: On the third and fourth Zolotarev problems in the complex plane. SIAM J. Numer. Anal. 32, 249–259 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Lorentz, G.G.: Approximation of Functions. Chelsea, New York (1986) zbMATHGoogle Scholar
- 27.Mason, J.C., Handscomb, D.: Chebyshev Polynomials. Chapman and Hall, London (2003) zbMATHGoogle Scholar
- 28.Milnor, J.: Dynamics in One Complex Variable. Princeton University Press, Princeton (2006) zbMATHGoogle Scholar
- 29.Ng, T.W.: Smale’s mean value conjecture for odd polynomials. J. Aust. Math. Soc. 75, 409–411 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Ng, T.W., Tsang, C.Y.: Chebyshev-Blaschke products. Preprint (2012) Google Scholar
- 31.Ng, T.W., Tsang, C.Y.: On finite Blaschke products sharing preimages of sets. Preprint (2012) Google Scholar
- 32.Ng, T.W., Wang, M.X.: Ritt’s theory on the unit disk. Forum Math. doi: 10.1515/form.2011.136
- 33.Ostrovskii, I.V., Pakovich, F.B., Zaidenberg, M.G.: A remark on complex polynomials of least deviation. Int. Math. Res. Not. 14, 699–703 (1996) MathSciNetCrossRefGoogle Scholar
- 34.Pakovich, F.B.: Sur un problème d’unicité pour les polynômes, prépublication. Inst. Fourier Math. 324, 1–4 (1995). Grenoble Google Scholar
- 35.Pakovich, F.B.: Sur un problème d’unicité pour les fouctions méromorphes. C.R. Acad. Sci. Paris Sr. I Math. 323, 745–748 (1996) MathSciNetGoogle Scholar
- 36.Pakovich, F.B.: On polynomials sharing preimages of compact sets and related questions. Geom. Funct. Anal. 18, 163–183 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Pritsker, I.E.: Products of polynomials in uniform norms. Trans. Am. Math. Soc. 353, 3971–3993 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Pritsker, I.E.: Inequalities for sums of Green potentials and Blaschke products. Bull. Lond. Math. Soc. 43, 561–575 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Radó, T.: Zur Theorie der mehrdeutigen konformen Abbildungen. Acta Litt. Sci. Univ. Hung. 1, 55–64 (1922) (German) zbMATHGoogle Scholar
- 40.Remmert, R.: Classical Topics in Complex Function Theory. Springer, New York (1998) zbMATHGoogle Scholar
- 41.Ritt, J.F.: Prime and composite polynomials. Trans. Am. Math. Soc. 23(1), 51–66 (1922) MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Rivlin, T.J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, 2nd edn. Wiley, New York (1990) zbMATHGoogle Scholar
- 43.Sheil-Small, T.: Complex Polynomials. Cambridge University Press, Cambridge (2002) zbMATHCrossRefGoogle Scholar
- 44.Singer, D.A.: The location of critical points of finite Blaschke products. Conform. Geom. Dyn. 10, 117–124 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Am. Math. Soc. 4(1), 1–36 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Steinmetz, N.: Rational Iteration: Complex Analytic Dynamical Systems. Studies in Mathematics (1993) zbMATHCrossRefGoogle Scholar
- 47.Walker, P.L.: Elliptic Functions: A Constructive Approach. Wiley, New York (1996) zbMATHGoogle Scholar
- 48.Walsh, J.L.: Note on the location of zeros of extremal polynomials in the non-euclidean plane. Acad. Serbe Sci. Publ. Inst. Math. 4, 157–160 (1952) MathSciNetzbMATHGoogle Scholar
- 49.Wang, M.X.: Factorizations of finite mappings on Riemann surfaces. M.Phil. thesis, HKU (2008). http://hub.hku.hk/handle/123456789/51854
- 50.Wang, M.X.: Rational points and transcendental points. Ph.D. thesis, ETH (2011). http://e-collection.library.ethz.ch/view/eth:4704
- 51.Yang, C.C.: Open problems in complex analysis. In: Proceedings of the S.U.N.Y. Brockport Conference. Dekker, New York (1978) Google Scholar
- 52.Zakeri, S.: On critical points of proper holomorphic maps on the unit disk. Bull. Lond. Math. Soc. 30, 62–66 (1996) MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013