Norms of Composition Operators Induced by Finite Blaschke Products on Möbius Invariant Spaces

  • María J. Martín
  • Dragan VukotićEmail author
Part of the Fields Institute Communications book series (FIC, volume 65)


We obtain an asymptotic formula for the norms of composition operators induced by finite Blaschke products on analytic (quotient) Besov spaces in terms of their degree. We also compute the norms of such operators on the true Bloch and Dirichlet spaces.


Finite Blaschke product Analytic Besov space Bloch space Dirichlet space Composition operator Operator norm 

Mathematics Subject Classification

47B33 30D45 31C25 



The authors thankfully acknowledges partial support from MICINN grant MTM2009-14694-C02-01, Spain. The second author was also partially supported by the European ESF Network HCAA (“Harmonic and Complex Analysis and Its Applications”).


  1. 1.
    Allen, R.F., Colonna, F.: On the isometric composition operators on the Bloch space in ℂn. J. Math. Anal. Appl. 355(2), 675–688 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arazy, J., Fisher, S.D., Peetre, J.: Möbius invariant function spaces. J. Reine Angew. Math. 363, 110–145 (1985) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arazy, J., Fisher, S.D., Peetre, J.: Besov Norms of Rational Functions. Lecture Notes Math., vol. 1302, pp. 125–129. Springer, Berlin (1988) Google Scholar
  4. 4.
    Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995) zbMATHGoogle Scholar
  5. 5.
    Garnett, J.B.: Bounded Analytic Functions. Academic Press, San Diego (1981). Reprinted by Springer, New York (2010) zbMATHGoogle Scholar
  6. 6.
    Heins, M.: Some characterizations of finite Blaschke products of positive degree. J. Anal. Math. 46, 162–166 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Martín, M.J.: Composition operators and geometric function theory (Spanish), 138 pp. Doctoral Thesis, Universidad Autónoma de Madrid (December 2005) Google Scholar
  8. 8.
    Martín, M.J., Vukotić, D.: Norms and spectral radii of composition operators acting on the Dirichlet space. J. Math. Anal. Appl. 304, 22–32 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Montes-Rodríguez, A.: The Pick-Schwarz lemma and composition operators on Bloch spaces. Rend. Circ. Mat. Palermo (2) Suppl. 56, 167–170 (1998). International Workshop on Operator Theory (Cefalù, 1997) Google Scholar
  10. 10.
    Xiong, C.: Norm of composition operators on the Bloch space. Bull. Aust. Math. Soc. 70(2), 293–299 (2004) zbMATHCrossRefGoogle Scholar
  11. 11.
    Zhu, K.: Analytic Besov spaces. J. Math. Anal. Appl. 157, 318–336 (1991) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Módulo 17, CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations