Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane

  • Hans G. Feichtinger
  • Margit PapEmail author
Part of the Fields Institute Communications book series (FIC, volume 65)


A multiresolution analysis in the Hardy space of the unit disc was introduced recently (see Pap in J. Fourier Anal. Appl. 17(5):755–776, 2011). In this paper we will introduce an analogous construction in the Hardy space of the upper half plane. The levels of the multiresolution are generated by localized Cauchy kernels on a special hyperbolic lattice in the upper half plane. This multiresolution has the following new aspects: the lattice which generates the multiresolution is connected to the Blaschke group, the Cayley transform and the hyperbolic metric. The second: the nth level of the multiresolution has finite dimension (in classical affine multiresolution this is not the case) and still we have the density property, i.e. the closure in norm of the reunion of the multiresolution levels is equal to the Hardy space of the upper half plane. The projection operator to the nth resolution level is a rational interpolation operator on a finite subset of the lattice points. If we can measure the values of the function on the points of the lattice the discrete wavelet coefficients can be computed exactly. This makes our multiresolution approximation very useful from the point of view of the computational aspects.


Hyperbolic wavelets Multiresolution on the upper half plane Interpolation operator Orthogonal rational wavelets 

Mathematics Subject Classification

30H10 33C47 41A20 42C40 43A32 43A65 



This chapter was developed during a fruitful stay of the second author at NuHAG group at the University of Vienna as Marie Curie fellow FP7-People-IEF-2009.


  1. 1.
    Akay, H., Ninnes, B.: Orthonormal basis functions for continuous-time systems and L p convergence. Math. Control Signals Syst. 12, 295–305 (1999) CrossRefGoogle Scholar
  2. 2.
    Bokor, J., Athans, M.: Frequency domain identification of the MIT interferometer tested in generalized orthogonal basis. In: Proceedings of the 11th IFAC Symposium on System Identification, Kiayushu, Japan, vol. 4, pp. 1735–1739 (1997) Google Scholar
  3. 3.
    Bokor, J., Schipp, F., Szabó, Z.: Identification of rational approximate models in H using generalized orthonormal basis. IEEE Trans. Autom. Control 44(1), 153–158 (1999) zbMATHCrossRefGoogle Scholar
  4. 4.
    Bultheel, A., González-Vera, P.: Wavelets by orthogonal rational kernels. Contemp. Math. 236, 101–126 (1999) CrossRefGoogle Scholar
  5. 5.
    Bultheel, A., González-Vera, P., Hendriksen, E., Njastad, O.: Orthogonal Rational Functions. Cambridge Monographs on Applied and Computational Mathematics, vol. 5. Cambridge University Press, Cambridge (1999) zbMATHCrossRefGoogle Scholar
  6. 6.
    Cima, J., Ross, W.: The Backward Shift on the Hardy Space. Mathematical Surveys and Monographs, vol. 79. Am. Math. Soc., Providence (2000). pp. xii+199. MR1761913 zbMATHGoogle Scholar
  7. 7.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dzrbasjan, M.M.: Biorthogonal systems of rational functions and best approximant of the Cauchy kernel on the real axis. Math. USSR Sb. 24(3), 409–433 (1974) CrossRefGoogle Scholar
  9. 9.
    Evangelista, G., Cavaliere, S.: Discrete frequency-warped wavelets: theory and applications. IEEE Trans. Signal Process. 46(4), 874–883 (1998) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions trough integrable group representations. In: Cwinkel, M., et al. (eds.) Functions Spaces and Applications. Lecture Notes in Math., vol. 1302, pp. 307–340. Springer, Berlin (1989) Google Scholar
  11. 11.
    Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decomposition I. J. Funct. Anal. 86(2), 307–340 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Goupilland, P., Grossman, A., Morlet, J.: Cycle-octave and related transforms in seismetic signal analysis. Geoexploration 25, 85–102 (1984) CrossRefGoogle Scholar
  13. 13.
    Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    de Hoog, T.J.: Rational Orthonormal Basis and Related Transforms in Linear System Modeling. Ponsen and Looijn, Wageningen (2001) Google Scholar
  15. 15.
    Mallat, S.: Theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Math. Intell. 11(7), 674–693 (1989) zbMATHCrossRefGoogle Scholar
  16. 16.
    Mashreghi, J.: Representation Theorems in Hardy Spaces. Cambridge University Press, Cambridge (2009) zbMATHGoogle Scholar
  17. 17.
    Pap, M.: Hyperbolic wavelets and multiresolution in \(H^{2}(\mathbb{T})\). J. Fourier Anal. Appl. 17(5), 755–776 (2011). doi: 10.1007/s00041-011-9169-2 MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Pap, M., Schipp, F.: The voice transform on the Blaschke group I. PU.M.A. 17(3–4), 387–395 (2006) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pap, M., Schipp, F.: The voice transform on the Blaschke group II. Ann. Univ. Sci. (Budapest), Sect. Comput. 29, 157–173 (2008) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Partington, J.: Interpolation, Identification and Sampling. London Mathematical Society Monographs, vol. 17. Oxford University Press, London (1997) zbMATHGoogle Scholar
  21. 21.
    Qian, T.: Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math. Methods Appl. Sci. (2009). doi: 10.1002/mma.1214.
  22. 22.
    Soumelidis, A., Bokor, J., Schipp, F.: Signal and system representations on hyperbolic groups: beyond rational orthogonal bases. In: ICC 2009 7th IEEE International Conference on Computational Cybernetics, Palma de Mallorca. ISBN: 978-1-4244-5311-5 Google Scholar
  23. 23.
    Soumelidis, A., Bokor, J., Schipp, F.: Detection of changes on signals and systems based upon representations in orthogonal rational bases. In: Proc. of 5th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, SAFEPROSS 2003, Washington D.C., USA (June 2003), on CD Google Scholar
  24. 24.
    Soumelidis, A., Bokor, J., Schipp, F.: Representation and approximation of signals and systems using generalized Kautz functions. In: Proc. of the 36th Conference on Decisions and Control, San Diego, CA, pp. 3793–3796 (1997), CDC’97 CrossRefGoogle Scholar
  25. 25.
    Soumelidis, A., Bokor, J., Schipp, F.: Frequency domain representation of signals in rational orthogonal bases. In: Proc. of the 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal (2002), on CD. Med’(2002) Google Scholar
  26. 26.
    Soumelidis, A., Pap, M., Schipp, F., Bokor, J.: Frequency domain identification of partial fraction models. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, June, pp. 1–6 (2002) Google Scholar
  27. 27.
    Szabó, Z.: Interpolation and quadrature formula for rational systems on the unit circle. Ann. Univ. Sci. (Budapest), Sect. Comput. 21, 41–56 (2002) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ward, N.F.D., Partington, J.R.: Robust identification in the disc algebra using rational wavelets and orthonormal basis functions. Int. J. Control 64, 409–423 (1996) zbMATHCrossRefGoogle Scholar
  29. 29.
    Ward, N.F.D., Partington, J.R.: A construction of rational wavelets and frames in Hardy-Sobolev spaces with applications to system modeling. SIAM J. Control Optim. 36(2), 654–679 (1998) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.NuHAG, Faculty of MathematicsUniversity of ViennaWienAustria
  2. 2.University of PécsPécsHungary

Personalised recommendations