Applications of Blaschke Products to the Spectral Theory of Toeplitz Operators
Chapter
- 1 Citations
- 891 Downloads
Abstract
The chapter is a survey of some applications of Blaschke products to the spectral theory of Toeplitz operators. Topics discussed include Toeplitz operators with bounded measurable symbols, factorisation with an infinite index, compositions with Blaschke products, representation of functions with a given asymptotic behaviour of the argument in a neighbourhood of a discontinuity in the form of a composition of a continuous function with a Blaschke product, and applications to the KdV equation.
Keywords
Toeplitz operators Spectral theory Discontinuous symbols Blaschke productsMathematics Subject Classification
47B35 30J10 47A10 30H10Notes
Acknowledgements
The first author was supported by PROMEP (México) via “Proyecto de Redes” and by CONACYT grant 102800.
References
- 1.Böttcher, A., Grudsky, S.: Toeplitz operators with discontinuous symbols: phenomena beyond piecewise continuity. Oper. Theory, Adv. Appl. 90, 55–118 (1996) Google Scholar
- 2.Böttcher, A., Grudsky, S.: On the composition of Muckenhoupt weights and inner functions. J. Lond. Math. Soc., II. Ser. 58(1), 172–184 (1998) zbMATHCrossRefGoogle Scholar
- 3.Böttcher, A., Grudsky, S.M., Spitkovsky, I.M.: Toeplitz operators with frequency modulated semi-almost periodic symbols. J. Fourier Anal. Appl. 7, 523–535 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Böttcher, A., Grudsky, S.M., Spitkovsky, I.M.: Block Toeplitz operators with frequency-modulated semi-almost periodic symbols. Int. J. Math. Math. Sci. 34, 2157–2176 (2003) CrossRefGoogle Scholar
- 5.Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators. Springer, Berlin (2006) zbMATHGoogle Scholar
- 6.Brown, A., Halmos, P.R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213, 89–102 (1963) MathSciNetzbMATHGoogle Scholar
- 7.Clancey, K.F.: One dimensional singular integral operators on L p. J. Math. Anal. Appl. 54, 522–529 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Clancey, K.F.: Corrigendum for the article “One dimensional singular integral operators on L p”. J. Math. Anal. Appl. 99, 527–529 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Coburn, L.A.: Weyl’s theorem for nonnormal operators. Mich. Math. J. 13, 285–288 (1966) MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Devinatz, A.: Toeplitz operators on H 2 spaces. Trans. Am. Math. Soc. 112(2), 304–317 (1964) MathSciNetzbMATHGoogle Scholar
- 11.Douglas, R.G.: Toeplitz and Wiener-Hopf operators in H ∞+C. Bull. Am. Math. Soc. 74, 895–899 (1968) zbMATHCrossRefGoogle Scholar
- 12.Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Springer, New York (1998) zbMATHCrossRefGoogle Scholar
- 13.Dybin, V., Grudsky, S.M.: Introduction to the Theory of Toeplitz Operators with Infinite Index. Birkhäuser, Basel (2002) zbMATHCrossRefGoogle Scholar
- 14.Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981) zbMATHGoogle Scholar
- 15.Gohberg, I.: On an application of the theory of normed rings to singular integral equations. Usp. Mat. Nauk 7:2(48), 149–156 (1952) (Russian) Google Scholar
- 16.Gokhberg, I., Krupnik, N.: Algebra generated by one-dimensional singular integral operators with piecewise continuous coefficients. Funct. Anal. Appl. 4, 193–201 (1970) (translation from Funkts. Anal. Prilozh. 4(3), 26–36 (1970)) zbMATHCrossRefGoogle Scholar
- 17.Gohberg, I., Krupnik, N.: One-Dimensional Linear Singular Integral Equations I & II. Birkhäuser, Basel (1992) CrossRefGoogle Scholar
- 18.Grudsky, S.M.: Toeplitz operators and the modelling of oscillating discontinuities with the help of Blaschke products. In: Elschner, J., et al. (eds.) Problems and Methods in Mathematical Physics. Oper. Theory Adv. Appl., vol. 121, pp. 162–193. Birkhäuser, Basel (2001) CrossRefGoogle Scholar
- 19.Grudskij, S.M., Khevelev, A.B.: On invertibility in L 2(R) of singular integral operators with periodic coefficients and a shift. Sov. Math. Dokl. 27, 486–489 (1983) (translated from Dokl. Akad. Nauk SSSR 269, 1303–1306 (1983)) zbMATHGoogle Scholar
- 20.Grudsky, S.M., Rybkin, A.: Quotient of Blaschke products and compactness and invertibility of Hankel and Toeplitz operators. Oper. Theory, Adv. Appl., Springer Basel AG 228, 127–150 (2013) Google Scholar
- 21.Grudsky, S.M., Shargorodsky, E.: Spectra of Toeplitz operators and compositions of Muckenhoupt weights with Blaschke products. Integral Equ. Oper. Theory 61, 63–75 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Hartman, P., Wintner, A.: The spectra of Toeplitz’s matrices. Am. J. Math. 76(4), 867–882 (1954) MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Helson, H., Szegö, G.: A problem in prediction theory. Ann. Mat. Pura Appl. 51(1), 107–138 (1960) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Hunt, R., Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Krupnik, N.Ya.: Some consequences of the Hunt–Muckenhoupt–Wheeden theorem. Mat. Issled. 47, 64–70 (1978) (Russian) MathSciNetzbMATHGoogle Scholar
- 26.Krupnik, N.Ya.: Banach Algebras with Symbol and Singular Integral Operators. Birkhäuser, Basel (1987) zbMATHGoogle Scholar
- 27.Mashreghi, J.: Representation Theorems in Hardy Spaces. Cambridge University Press, Cambridge (2009) zbMATHGoogle Scholar
- 28.Nordgren, E.A.: Composition operators. Can. J. Math. 20, 442–449 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Rybkin, A.: Meromorphic solutions to the KdV equation with non-decaying initial data supported on a left half line. Nonlinearity 23(5), 1143–1167 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Rybkin, A.: The Hirota τ-function and well-posedness of the KdV equation with an arbitrary step-like initial profile decaying on the right half line. Nonlinearity 24(10), 2953–2990 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Saginashvili, A.I.: Singular integral operators with coefficients having semi-almost-periodic type discontinuities. Soobshch. Akad. Nauk Gruz. SSR 94, 289–291 (1979) (Russian) MathSciNetzbMATHGoogle Scholar
- 32.Saginashvili, A.I.: Singular integral operators with semialmost periodic discontinuities at the coefficients. Soobshch. Akad. Nauk Gruz. SSR 95, 541–543 (1979) (Russian) MathSciNetzbMATHGoogle Scholar
- 33.Saginashvili, A.I.: Singular integral equations with coefficients having discontinuities of semi-almost-periodic type. Transl., Ser. 2, Am. Math. Soc. 127, 49–59 (1985) (translated from Tr. Tbil.. Mat. Inst. Razmadze 66, 84–95 (1980)) Google Scholar
- 34.Sarason, D.: Generalized interpolation in H ∞. Trans. Am. Math. Soc. 127, 179–203 (1967) MathSciNetzbMATHGoogle Scholar
- 35.Sarason, D.: Algebras of functions on the unit circle. Bull. Am. Math. Soc. 79(2), 286–299 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Sarason, D.: Toeplitz operators with semi-almost periodic symbols. Duke Math. J. 44, 354–364 (1977) MathSciNetCrossRefGoogle Scholar
- 37.Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, Berlin (1993) zbMATHCrossRefGoogle Scholar
- 38.Shargorodsky, E.: On singular integral operators with coefficients from P nℂ. Tr. Tbil. Mat. Inst. Razmadze 93, 52–66 (1990) (Russian) Google Scholar
- 39.Shargorodsky, E.: On some geometric conditions of Fredholmity of one-dimensional singular integral operators. Integral Equ. Oper. Theory 20(1), 119–123 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Shargorodsky, E.: A remark on the essential spectra of Toeplitz operators with bounded measurable coefficients. Integral Equ. Oper. Theory 57, 127–132 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Simonenko, I.B.: The Riemann boundary value problem for n pairs of functions with measurable coefficients and its application to the investigation of singular integrals in the spaces L p with weight. Izv. Akad. Nauk SSSR, Ser. Mat. 28, 277–306 (1964) (Russian) MathSciNetzbMATHGoogle Scholar
- 42.Simonenko, I.B.: Some general questions in the theory of the Riemann boundary problem. Math. USSR, Izv. 2, 1091–1099 (1968) (translated from Izv. Akad. Nauk SSSR Ser. Mat. 32(5), 1138–1146 (1968)) zbMATHCrossRefGoogle Scholar
- 43.Spitkovskij, I.M.: Factorization of matrix-functions belonging to the classes \(\tilde{A}_{n}(p)\) and TL. Ukr. Math. J. 35, 383–388 (1983) (translation from Ukr. Mat. Zh. 35(4), 455–460 (1983)) zbMATHCrossRefGoogle Scholar
- 44.Widom, H.: Inversion of Toeplitz matrices II. Ill. J. Math. 4(1), 88–99 (1960) MathSciNetzbMATHGoogle Scholar
- 45.Widom, H.: Singular integral equations in L p. Trans. Am. Math. Soc. 97(1), 131–160 (1960) MathSciNetzbMATHGoogle Scholar
- 46.Widom, H.: Toeplitz operators on H p. Pac. J. Math. 19(3), 573–582 (1966) MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013