Skip to main content

Nonparametric Learning

  • Chapter
  • First Online:
Pattern Recognition and Classification
  • 7129 Accesses

Abstract

With parametric methods, the forms of the underlying density functions are known, and are generally taken as Gaussian. However, these parametric forms do not always fit the probability densities encountered in practice. Most of the classical parametric densities are unimodal, whereas many practical problems involve multimodal densities. For arbitrary distributions of unknown densities, nonparametric methods need to be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anlauf, J.K., Biehl, M.: The AdaTron: an adaptive perceptron algorithm. Europhys. Lett. 10, 687–692 (1989)

    Article  Google Scholar 

  • Cortes, C., Vapnick, V.N.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  • Cybenko, G.: Approximations by superpositions of sigmoidal functions. Math Control Signal Syst 2, 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Gallant, S.I.: Perceptron-based learning algorithms. IEEE Trans. Neural Netw. 1, 179–191 (1990)

    Article  Google Scholar 

  • Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)

    Article  Google Scholar 

  • Krauth, W., Mezard, M.: Learning algorithms with optimal stability in neural networks. J. Phys. A 20, 745–752 (1987)

    Article  MathSciNet  Google Scholar 

  • Le Cun, Y.: Learning processes in an asymmetric threshold network. In: Bienenstock, E., Fogelman-Smith, F., Weisbuch, G. (eds.) Disordered Systems and Biological Organization, NATO ASI Series, F20. Springer-Verlag, Berlin (1986)

    Google Scholar 

  • McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 7, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  • Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, MA (1969)

    MATH  Google Scholar 

  • Parker, D.: Learning Logic. Technical Report TR-87. MIT Center for Computational Research in Economics and Management Science, Cambridge, MA (1985)

    Google Scholar 

  • Widrow, B., Hoff, M.E.: Adaptive switching circuits. In 1960 IRE WESCON Convention Record, part 4, pp. 96–104. IRE, New York (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dougherty, G. (2013). Nonparametric Learning. In: Pattern Recognition and Classification. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5323-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5323-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5322-2

  • Online ISBN: 978-1-4614-5323-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics