Skip to main content

Brauer–Thrall Theory for Maximal Cohen–Macaulay Modules

  • Chapter
  • First Online:
Commutative Algebra

Abstract

The Brauer-Thrall Conjectures, now theorems, were originally stated for finitely generated modules over a finite-dimensional k-algebra. They say, roughly speaking, that infinite representation type implies the existence of lots of indecomposable modules of arbitrarily large k-dimension. These conjectures have natural interpretations in the context of maximal Cohen-Macaulay modules over Cohen-Macaulay local rings. This is a survey of progress on these transplanted conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artin, M., Verdier, J.-L. Reflexive modules over rational double points. Math. Ann. 270(1), 79–82 (1985). MR 769609

    Google Scholar 

  2. Auslander, M.: Isolated singularities and existence of almost split sequences. Representation Theory, II (Ottawa, Ont., 1984). Lecture Notes in Mathematics, vol. 1178, pp. 194–242. Springer, Berlin (1986). MR 842486

    Google Scholar 

  3. Auslander, M.: Rational singularities and almost split sequences. Trans. Amer. Math. Soc. 293(2), 511–531 (1986). MR 816307

    Google Scholar 

  4. Avramov, L.L.: Infinite free resolutions. Six Lectures on Commutative Algebra (Bellaterra, 1996). Progress in Mathematics, vol. 166, pp. 1–118. Birkhäuser, Basel (1998). MR 1648664

    Google Scholar 

  5. Bass, H.: Torsion free and projective modules. Trans. Amer. Math. Soc. 102, 319–327 (1962). MR 0140542

    Google Scholar 

  6. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963). MR 0153708

    Google Scholar 

  7. Bruns, W.: The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals. Proc. Amer. Math. Soc. 83(1), 19–24 (1981). MR 0619972

    Google Scholar 

  8. Buchweitz, R.-O., Greuel, G.-M., Schreyer, F.-O.: Cohen–Macaulay modules on hypersurface singularities. II. Invent. Math. 88(1), 165–182 (1987). MR 877011

    Google Scholar 

  9. Çimen, N.: One-dimensional rings of finite Cohen–Macaulay type. Ph.D. thesis, University of Nebraska–Lincoln, Lincoln, NE (1994). Ph.D. Thesis, University of Nebraska, Lincoln, p. 105. MR 2691778

    Google Scholar 

  10. Çimen, N.: One-dimensional rings of finite Cohen-Macaulay type. J. Pure Appl. Algebra 132(3), 275–308 (1998). MR 1642094

    Google Scholar 

  11. Çimen, N., Wiegand, R., Wiegand, S.: One-dimensional rings of finite representation type. Abelian groups and modules (Padova, 1994). Mathematical Applications, vol. 343, pp. 95–121. Kluwer Academic Publishers, Dordrecht (1995) MR 1378192

    Google Scholar 

  12. Crabbe, A., Saccon, S.: Ranks of indecomposable modules over rings of infinite Cohen–Macaulay type. Comm. Algebra, to appear, Available at arXiv:1201.314v1.

    Google Scholar 

  13. Dade, E.C.: Some indecomposable group representations. Ann. Math. (2) 77, 406–412 (1963). MR 0144981

    Google Scholar 

  14. Dieterich, E.: Representation types of group rings over complete discrete valuation rings. Integral representations and applications (Oberwolfach, 1980). Lecture Notes in Mathematics, vol. 882, pp. 369–389. Springer, Berlin (1981). MR 646112

    Google Scholar 

  15. Dieterich, E.: Reduction of isolated singularities. Comment. Math. Helv. 62(4), 654–676 (1987). MR 920064

    Google Scholar 

  16. Drozd, Y.A., Roĭter, A.V.: Commutative rings with a finite number of indecomposable integral representations. Izv. Akad. Nauk SSSR Ser. Mat. 31, 783–798 (1967). MR 0220716

    Google Scholar 

  17. Eisenbud, D., Peña, J.A.: Chains of maps between indecomposable modules. J. Reine Angew. Math. 504, 29–35 (1998). MR 1656826

    Google Scholar 

  18. Elkik, R.: Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4) 6, 553–603 (1974). MR 0345966

    Google Scholar 

  19. Green, E.L., Reiner, I.: Integral representations and diagrams. Michigan Math. J. 25(1), 53–84 (1978). MR 497882

    Google Scholar 

  20. Gustafson, W.H.: The history of algebras and their representations. Representations of algebras (Puebla, 1980). Lecture Notes in Mathematics, vol. 944, pp. 1–28. Springer, Berlin (1982). MR 672114

    Google Scholar 

  21. Harada, M., Sai, Y.: On categories of indecomposable modules I. Osaka J. Math. 8, 309–321 (1971)

    Google Scholar 

  22. Herzog, J.: Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen–Macaulay–Moduln. Math. Ann. 233(1), 21–34 (1978). MR 0463155

    Google Scholar 

  23. Huneke, C., Leuschke, G.J.: Two theorems about maximal Cohen–Macaulay modules. Math. Ann. 324(2), 391–404 (2002). MR 1933863

    Google Scholar 

  24. Jacobinski, H.: Sur les ordres commutatifs avec un nombre fini de réseaux indécomposables. Acta Math. 118, 1–31 (1967). MR 0212001

    Google Scholar 

  25. Jans, J.P.: On the indecomposable representations of algebras. Ann. Math. (2) 66, 418–429 (1957). MR 0088485

    Google Scholar 

  26. Karr, R., Wiegand, R.: Direct-sum behavior of modules over one-dimensional rings. Commutative algebra—Noetherian and non-Noetherian perspectives, 251–275, Springer, New York, 2011. MR 2762514

    Google Scholar 

  27. Kawasaki, T.: Local cohomology modules of indecomposable surjective-Buchsbaum modules over Gorenstein local rings. J. Math. Soc. Japan 48(3), 551–566 (1996). MR 1389995

    Google Scholar 

  28. Knörrer, H.: Cohen–Macaulay modules on hypersurface singularities. I. Invent. Math. 88(1), 153–164 (1987). MR 877010

    Google Scholar 

  29. Kronecker, L.: Über die congruenten Transformationen der bilinearen Formen. In: Hensel, K. (ed.) Leopold Kroneckers Werke, vol. I. Monatsberichte Königl. Preuß. Akad. Wiss. Berlin, pp. 423–483 (1874). (German)

    Google Scholar 

  30. Lech, C.: A method for constructing bad Noetherian local rings. Algebra, algebraic topology and their interactions (Stockholm, 1983). Lecture Notes in Mathematics, vol. 1183, pp. 241–247. Springer, Berlin (1986). MR 846452

    Google Scholar 

  31. Leuschke, G.J., Wiegand, R.: Hypersurfaces of bounded Cohen-Macaulay type. J. Pure Appl. Algebra 201(1–3), 204–217 (2005). MR 2158755

    Google Scholar 

  32. Leuschke, G.J., Wiegand, R.: Local rings of bounded Cohen-Macaulay type. Algebr. Represent. Theory 8(2), 225–238 (2005). MR 2162283

    Google Scholar 

  33. Leuschke, G.J., Wiegand, R.: Cohen–Macaulay representations. Mathematical Surveys and Monographs, American Mathematical Society, Providence (2012). MR 2292367

    Google Scholar 

  34. Matsumura, H.: Commutative ring theory. In: Cambridge Studies in Advanced Mathematics, vol. 8, 2nd edn. Cambridge University Press, Cambridge (1989). Translated from the Japanese by M. Reid. MR 1011461

    Google Scholar 

  35. Nazarova, L.A., Roĭter, A.V.: Kategornye matrichnye zadachi i problema Brauera-Trella. Izdat. “Naukova Dumka”, Kiev (1973). MR 0412233

    Google Scholar 

  36. Popescu, D., Roczen, M.: Indecomposable Cohen-Macaulay modules and irreducible maps. Compositio Math. 76(1–2), 277–294 (1990). Algebraic geometry (Berlin, 1988). MR 1078867

    Google Scholar 

  37. Popescu, D., Roczen, M.: The second Brauer-Thrall conjecture for isolated singularities of excellent hypersurfaces. Manuscripta Math. 71(4), 375–383 (1991). MR 1104991

    Google Scholar 

  38. Ringel, C.M.: On algorithms for solving vector space problems. I. Report on the Brauer-Thrall conjectures: Rojter’s theorem and the theorem of Nazarova and Rojter. Representation theory, I (Proceedings of the Workshop, Carleton University, Ottawa, Ontoria (1979). Lecture Notes in Mathematics, vol. 831, pp. 104–136. Springer, Berlin (1980). MR 607142

    Google Scholar 

  39. Roĭter, A.V.: Unboundedness of the dimensions of the indecomposable representations of an algebra which has infinitely many indecomposable representations. Izv. Akad. Nauk SSSR Ser. Mat. 32, 1275–1282 (1968). MR 0238893

    Google Scholar 

  40. Smalø, S.O.: The inductive step of the second Brauer–Thrall conjecture. Canad. J. Math. 32(2), 342–349 (1980). MR 571928

    Google Scholar 

  41. Weierstrass, K.: On the theory of bilinear and quadratic forms. (Zur Theorie der bilinearen und quadratischen Formen.) Monatsberichte Königl. Preuß. Akad. Wiss. Berlin, 1868. (German)

    Google Scholar 

  42. Wiegand, R.: Noetherian rings of bounded representation type. Commutative algebra (Berkeley, CA, 1987). Mathematical Science Research Institute Publications, vol. 15, pp. 497–516. Springer, New York (1989). MR 1015536

    Google Scholar 

  43. Wiegand, R.: Curve singularities of finite Cohen–Macaulay type. Ark. Mat. 29(2), 339–357 (1991). MR 1150382

    Google Scholar 

  44. Wiegand, R.: One-dimensional local rings with finite Cohen–Macaulay type. Algebraic geometry and its applications (West Lafayette, IN, 1990), pp. 381–389. Springer, New York (1994). MR 1272043

    Google Scholar 

  45. Wiegand, R.: Local rings of finite Cohen-Macaulay type. J. Algebra 203(1), 156–168 (1998). MR 1620725

    Google Scholar 

  46. Yoshino, Y.: Brauer–Thrall type theorem for maximal Cohen–Macaulay modules. J. Math. Soc. Japan 39(4), 719–739 (1987). MR 905636

    Google Scholar 

  47. Yoshino, Y.: Cohen–Macaulay modules over Cohen–Macaulay rings. In: London Mathematical Society Lecture Note Series, vol. 146. Cambridge University Press, Cambridge (1990). MR 1079937

    Google Scholar 

Download references

Acknowledgments

Research for this work was partially supported by NSF grant DMS-0902119 (GJL) and by a Simons Foundation Collaboration Grant (RW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Wiegand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leuschke, G.J., Wiegand, R. (2013). Brauer–Thrall Theory for Maximal Cohen–Macaulay Modules. In: Peeva, I. (eds) Commutative Algebra. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5292-8_18

Download citation

Publish with us

Policies and ethics