Pure O-Sequences: Known Results, Applications, and Open Problems

Chapter

Abstract

This paper presents a discussion of the algebraic and combinatorial aspects of the theory of pure O-sequences. Various instances where pure O-sequences appear are described. Several open problems that deserve further investigation are also presented.

Notes

Acknowledgements

We wish to thank David Cook II and Richard Stanley for their helpful comments. The third author also thanks Jürgen Bierbrauer for an interesting discussion on the connections between group theory and Steiner systems. We thank the referee for a careful reading of the chapter.

The work for this chapter was done while the first author was sponsored by the National Security Agency under Grant Number H98230-12-1-0204 and by the Simons Foundation under grant #208579. The work for this chapter was done while the second author was sponsored by the National Security Agency under Grant Number H98230-12-1-0247 and by the Simons Foundation under grant #208869.

References

  1. 1.
    Björner, A.: Nonpure shellability, F-vectors, subspace arrangements and complexity. In: Formal Power Series and Algebraic Combinatorics. Series Formelles et Combinatoire Algébrique (1994). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 24, pp. 25–54 (1994)Google Scholar
  2. 2.
    Boij, M., Zanello, F.: Level algebras with bad properties. Proc. Amer. Math. Soc. 135(9), 2713–2722 (2007)Google Scholar
  3. 3.
    Boij, M., Migliore, J., Miró-Roig, R., Nagel, U., Zanello, F.: On the shape of a pure O-sequence. Mem. Amer. Math. Soc. 218(2024), vii + 78 pp (2012)Google Scholar
  4. 4.
    Boyle, B.: On the unimodality of pure O-sequences. Ph.D. Thesis, University of Notre Dame, Indiana (2012)Google Scholar
  5. 5.
    Brenner, H., Kaid, A.: Syzygy bundles on 2 and the weak Lefschetz property. Illinois J. Math. 51(4), 1299–1308 (2007)Google Scholar
  6. 6.
    Brenti, F.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update. In: Jerusalem Combinatorics ’93. Contemporary Mathematics, vol. 178, pp. 71–89 (1994)Google Scholar
  7. 7.
    Bruck, R.H., Ryser, H.J.: The nonexistence of certain finite projective planes. Canadian J. Math. 1, 88–93 (1949)Google Scholar
  8. 8.
    Bruns, W., Herzog, J.: Cohen–Macaulay rings. Revised edition, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1998)Google Scholar
  9. 9.
    Chari, M.K.: Matroid inequalities. Discrete Math. 147(1–3), 283–286 (1995)Google Scholar
  10. 10.
    Chari, M.K.: Two decompositions in topological combinatorics with applications to matroid complexes. Trans. Amer. Math. Soc. 349(10), 3925–3943 (1997)Google Scholar
  11. 11.
    Chen, C., Guo, A., Jin, X., Liu, G.: Trivariate monomial complete intersections and plane partitions. J. Commut. Algebra 3(4), 459–490 (2011)Google Scholar
  12. 12.
    Cho, Y.H., Iarrobino, A.: Hilbert Functions and Level Algebras. J. Algebra 241(2), 745–758Google Scholar
  13. 13.
    Chowla, S., Ryser, H.J.: Combinatorial problems. Canadian J. Math. 2, 93–99 (1950)Google Scholar
  14. 14.
    Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs. CRC Press, Boca Raton (1996)Google Scholar
  15. 15.
    Constantinescu, A., Varbaro, M.: h-vectors of matroid complexes. Preprint (2012)Google Scholar
  16. 16.
    Cook, D. II: The Lefschetz properties of monomial complete intersections in positive characteristic. J. Algebra 369, 42–58 (2012)Google Scholar
  17. 17.
    Cook, D. II, Nagel, U.: Hyperplane sections and the subtlety of the Lefschetz properties. J. Pure Appl. Algebra 216(1), 108–114 (2012)Google Scholar
  18. 18.
    Cook, D. II, Nagel, U.: The weak Lefschetz property, monomial ideals, and lozenges. Illinois J. Math. (to appear). (arXiv:0909.3509)Google Scholar
  19. 19.
    Cook, D. II, Nagel, U.: Enumerations deciding the weak Lefschetz property. Preprint. (arXiv:1105.6062)Google Scholar
  20. 20.
    Dawson, J.E.: A collection of sets related to the Tutte polynomial of a matroid. In: Graph theory, Singapore (1983). Lecture Notes in Mathematics, vol. 1073, pp. 193–204. Springer, Berlin (1984)Google Scholar
  21. 21.
    de Bruijn, N.G., van Ebbenhorst Tengbergen, Ca., Kruyswijk, D.: On the set of divisors of a number. Nieuw Arch. Wiskunde (2) 23, 191–193 (1951)Google Scholar
  22. 22.
    De Loera, J.A., Kemper, Y., Klee, S.: h-vectors of small matroid complexes. Electron. J. Combin. 19, P14 (2012)Google Scholar
  23. 23.
    Dembowski, P.: Finite geometries. Reprint of the 1968 original, Classics in Mathematics, Springer, Berlin, xii + 375 pp (1997)Google Scholar
  24. 24.
    Fröberg, R., Laksov, D.: Compressed Algebras. Conference on Complete Intersections in Acireale. In: Lecture Notes in Mathematics, vol. 1092, pp. 121–151. Springer, Berlin (1984)Google Scholar
  25. 25.
    Geramita, A.V.: Inverse systems of fat points: Waring’s problem, secant varieties and Veronese varieties and parametric spaces of Gorenstein ideals. Queen’s Papers in Pure and Applied Mathematics, vol. 102. The Curves Seminar at Queen’s, vol. X, pp. 3–114 (1996)Google Scholar
  26. 26.
    Geramita, A.V., Harima, T., Migliore, J., Shin, Y.: The Hilbert function of a level algebra. Mem. Amer. Math. Soc. 186(872), vi + 139 pp (2007)Google Scholar
  27. 27.
    Hà, H.T., Stokes, E., Zanello, F.: Pure O-sequences and matroid h-vectors. Ann. Comb. (to appear) (arXiv:1006.0325)Google Scholar
  28. 28.
    Hanani, M.: On Quadruple Systems. Canad. J. Math. 12, 145–157 (1960)Google Scholar
  29. 29.
    Harima, T.: Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property. Proc. Amer. Math. Soc. 123(29), 3631–3638 (1995)Google Scholar
  30. 30.
    Harima, T., Migliore, J., Nagel, U., Watanabe, J.: The weak and strong Lefschetz properties for Artinian K-algebras. J. Algebra 262(1), 99–126 (2003)Google Scholar
  31. 31.
    Hausel, T., Sturmfels, B.: Toric hyperkähler varieties. Doc. Math. 7, 495–534 (2002)Google Scholar
  32. 32.
    Hausel, T.: Quaternionic geometry of matroids. Cent. Eur. J. Math. 3(1), 26–38 (2005)Google Scholar
  33. 33.
    Herzog, J., Popescu, D.: The strong Lefschetz property and simple extensions. Preprint (arXiv:math/05065537)Google Scholar
  34. 34.
    Hibi, T.: What can be said about pure O-sequences? J. Combin. Theory Ser. A 50(2), 319–322 (1989)Google Scholar
  35. 35.
    Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Amer. Math. Soc. 25, 907–927 (2012)Google Scholar
  36. 36.
    Huh, J.: h-vectors of matroids and logarithmic concavity. Preprint (arXiv:1201.2915)Google Scholar
  37. 37.
    Huh, J., Katz, E.: Log-concavity of characteristic polynomials and the Bergman fan of matroids. Math. Ann. 354, 1103–1116 (2012)Google Scholar
  38. 38.
    Iarrobino, A.: Compressed Algebras: Artin algebras having given socle degrees and maximal length. Trans. Amer. Math. Soc. 285(1), 337–378 (1984)Google Scholar
  39. 39.
    Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci. Springer Lecture Notes in Mathematics, vol. 1721. Springer, Heidelberg (1999)Google Scholar
  40. 40.
    Kirkman, T.P.: On a Problem in Combinatorics, Cambridge Dublin Math. J. 2, 191–204 (1847)Google Scholar
  41. 41.
    Lam, C.W.H.: The search for a finite projective plane of order 10. Amer. Math. Monthly 98(4), 305–318 (1991)Google Scholar
  42. 42.
    Lenz, M.: The f-vector of a realizable matroid complex is strictly log-concave. Combinatorics Probability, and Computing (to appear). (arXiv:1106.2944)Google Scholar
  43. 43.
    Li, J., Zanello, F.: Monomial complete intersections, the Weak Lefschetz Property and plane partitions. Discrete Math. 310(24), 3558–3570 (2010)Google Scholar
  44. 44.
    Lindner, C.C., Rodger, C.A.: Design Theory. CRC Press, Boca Raton (1997)Google Scholar
  45. 45.
    Lindsey, M.: A class of Hilbert series and the strong Lefschetz property. Proc. Amer. Math. Soc. 139(1), 79–92 (2011)Google Scholar
  46. 46.
    Linusson, S.: The number of M-sequences and f-vectors. Combinatorica 19(2), 255–266 (1999)Google Scholar
  47. 47.
    Macaulay, F.H.S.: Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26(1), 531–555 (1927)Google Scholar
  48. 48.
    Mathieu, E.: Mémoire sur l’étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables. J. Math. Pures Appl. (Liouville) (2) VI, 241–323 (1861)Google Scholar
  49. 49.
    Mathieu, E.: Sur la fonction cinq fois transitive de 24 quantités. Liouville J. (2) XVIII, 25–47 (1873)Google Scholar
  50. 50.
    Merino, C.: The chip firing game and matroid complexes. Discrete models: combinatorics, computation, and geometry (2001). Discrete Mathematics and Theoretical Computer Science Proceedings, AA, Maison de l’informatique et des mathématiques discrétes (MIMD), Paris. pp. 245–255 (2001)Google Scholar
  51. 51.
    Migliore, J., Nagel, U.: Reduced arithmetically Gorenstein schemes and simplicial polytopes with maximal Betti numbers. Adv. Math. 180(1), 1–63 (2003)Google Scholar
  52. 52.
    Migliore, J., Nagel, U.: A tour of the weak and strong Lefschetz properties. Preprint (arXiv:1109.5718)Google Scholar
  53. 53.
    Migliore, J., Nagel, U., Zanello, F.: A lower bound on the second entry of a Gorenstein h-vector and a conjecture of Stanley. Proc. Amer. Math. Soc. 136(8), 2755–2762 (2008)Google Scholar
  54. 54.
    Migliore, J., Nagel, U., Zanello, F.: Bounds and asymptotic minimal growth for Gorenstein Hilbert functions. J. Algebra 210(5), 1510–1521 (2009)Google Scholar
  55. 55.
    Migliore, J., Miró-Roig, R., Nagel, U.: Monomial ideals, almost complete intersections, and the weak Lefschetz property. Trans. Amer. Math. Soc. 363(1), 229–257 (2011)Google Scholar
  56. 56.
    Neel, D.L., Neudauer, N.A.: Matroids you have known. Math. Mag. 82(1), 26–41 (2009)Google Scholar
  57. 57.
    Oh, S.: Generalized permutohedra, h-vectors of cotransversal matroids and pure O-sequences. Preprint (arXiv:1005.5586)Google Scholar
  58. 58.
    Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Corrected reprint of the 1988 edition. With an appendix by S.I. Gelfand. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (2011)Google Scholar
  59. 59.
    Östergard, P.R.J., Pottonen, O.: There exists no Steiner system S(4,5,17). J. Combin. Theory Ser. A 115(8), 1570–1573 (2008)Google Scholar
  60. 60.
    Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (2006)Google Scholar
  61. 61.
    Pastine, A.. Zanello, F.: Two unfortunate properties of pure f-vectors, in preparationGoogle Scholar
  62. 62.
    Proudfoot, N.: On the h-vector of a matroid complex. unpublished note.Google Scholar
  63. 63.
    Reid, L., Roberts, L., Roitman, M.: On complete intersections and their Hilbert functions. Canad. Math. Bull. 34(4), 525–535 (1991)Google Scholar
  64. 64.
    Schweig, J.: On the h-Vector of a lattice path matroid. Electron. J. Combin. 17(1), N3 (2010)Google Scholar
  65. 65.
    Sekiguchi, H.: The upper bound of the Dilworth number and the Rees number of Noetherian local rings with a Hilbert function. Adv. Math. 124(2), 197–206 (1996)Google Scholar
  66. 66.
    Stanley, R.: Cohen–Macaulay complexes. In: Aigner, M. (ed.) Higher Combinatorics, pp. 51–62. Reidel, Dordrecht (1977)Google Scholar
  67. 67.
    Stanley, R.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)Google Scholar
  68. 68.
    Stanley, R.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. Ann. New York Acad. Sci. 576, 500–535 (1989)Google Scholar
  69. 69.
    Stanley, R.: Combinatorics and commutative algebra. Progress in Mathematics, vol. 41, 2nd edn. Birkhäuser, Boston (1996)Google Scholar
  70. 70.
    Stanley, R.: Positivity problems and conjectures in algebraic combinatorics. In Mathematics: Frontiers and Perspectives, pp. 295–319. American Mathematical Society, Providence (2000)Google Scholar
  71. 71.
    Stanley, R.: Enumerative Combinatorics, vol. I, 2nd edn. Cambridge University Press, Cambridge (2012)Google Scholar
  72. 72.
    Stanley, R., Zanello, F.: On the rank function of a differential poset. Electron. J. Combin. 19(2), p. 13, 17 (2012)Google Scholar
  73. 73.
    Stokes, E.: The h-vectors of matroids and the arithmetic degree of squarefree strongly stable ideals. Ph.D. Thesis, University of Kentucky, UK (2007)Google Scholar
  74. 74.
    Swartz, E.: g-elements of matroid complexes. J. Combin. Theory Ser. B 88(2), 369–375 (2003)Google Scholar
  75. 75.
    Swartz, E.: g-elements, finite buildings, and higher Cohen–Macaulay connectivity. J. Combin. Theory Ser. A 113(7), 1305–1320 (2006)Google Scholar
  76. 76.
    Tahat, A.: On the nonunimodality of Cohen-Macaulay f-vectors. M.S. Thesis, Michigan Technological University, in preparationGoogle Scholar
  77. 77.
    Veblen, O., Wedderburn, J.H.M.: Non-Desarguesian and non-Pascalian geometries. Trans. Amer. Math. Soc. 8(3), 379–388 (1907)Google Scholar
  78. 78.
    Watanabe, J.: The Dilworth number of Artinian rings and finite posets with rank function. In: Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics, vol. 11, pp. 303–312. Kinokuniya Co. North Holland, Amsterdam (1987)Google Scholar
  79. 79.
    White, N. (ed.): Theory of matroids. Encyclopedia of Mathematics and Its Applications, vol. 26. Cambridge University Press, Cambridge (1986)Google Scholar
  80. 80.
    White, N. (ed.): Matroids Applications. In: Encyclopedia of Mathematics and Its Applications, vol. 40. Cambridge University Press, Cambridge (1992)Google Scholar
  81. 81.
    Zanello, F.: Extending the idea of compressed algebra to arbitrary socle-vectors. J. Algebra 270(1), 181–198 (2003)Google Scholar
  82. 82.
    Zanello, F.: Extending the idea of compressed algebra to arbitrary socle-vectors, II: cases of non-existence. J. Algebra 275(2), 730–748 (2004)Google Scholar
  83. 83.
    Zanello, F.: A non-unimodal codimension 3 level h-vector. J. Algebra 305(2), 949–956 (2006)Google Scholar
  84. 84.
    Zanello, F.: Interval Conjectures for level Hilbert functions. J. Algebra 321(10), 2705–2715 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonUSA
  3. 3.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations