Skip to main content

Novel Agents in Multiple Myeloma

  • Chapter
  • First Online:
  • 602 Accesses

Abstract

The past decade has witnessed a dramatic increase in the therapeutic options for the treatment of multiple myeloma (MM) with the introduction of novel biologically targeted agents which in turn have resulted in significantly improved outcomes. However, myeloma remains incurable, and ongoing efforts to identify novel therapeutic approaches remain an urgent priority. Newer agents that target tumour and stromal compartments can be categorized as those that target protein dynamics (such as ubiquitin–proteasome system and heat-shock protein 90), drugs modulating anti-MM immune response (IMiDs), antibodies targeting membrane-bound receptors (including CS1, CD38, CD138), epigenetic modulators (DNA methyltransferase and histone deacetylase inhibitors), intracellular-signalling kinase inhibitors (PI3k/Akt/mTOR, MAPK pathways) and compounds disrupting the cell-cycle molecular machinery (such as CDKIs and Aurora kinase inhibitors). This chapter focuses on new therapeutic targets which have shown promising preclinical results and early evidence of anti-MM activity in clinical studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brenner H, Gondos A, Pulte D (2008) Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 111:2521–2526

    Article  PubMed  CAS  Google Scholar 

  2. Kumar SK, Rajkumar SV, Dispenzieri A et al (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111:2516–2520

    Article  PubMed  CAS  Google Scholar 

  3. Kumar SK, Lee JH, Lahuerta JJ et al (2011) Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia 26(1):149–157

    Article  PubMed  Google Scholar 

  4. Anderson KC (2011) Oncogenomics to target myeloma in the bone marrow microenvironment. Clin Cancer Res 17:1225–1233

    Article  PubMed  CAS  Google Scholar 

  5. Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364:1046–1060

    Article  PubMed  CAS  Google Scholar 

  6. Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617

    Article  PubMed  CAS  Google Scholar 

  7. Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  8. San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  PubMed  CAS  Google Scholar 

  9. Hideshima T, Chauhan D, Shima Y et al (2000) Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96:2943–2950

    PubMed  CAS  Google Scholar 

  10. Hideshima T, Richardson PG, Anderson KC (2006) Current therapeutic uses of lenalidomide in multiple myeloma. Expert Opin Investig Drugs 15:171–179

    Article  PubMed  CAS  Google Scholar 

  11. Rajkumar SV, Rosinol L, Hussein M et al (2008) Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol 26:2171–2177

    Article  PubMed  CAS  Google Scholar 

  12. Dimopoulos M, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132

    Article  PubMed  CAS  Google Scholar 

  13. Weber DM, Chen C, Niesvizky R et al (2007) Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 357:2133–2142

    Article  PubMed  CAS  Google Scholar 

  14. Orlowski RZ, Nagler A, Sonneveld P et al (2007) Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 25:3892–3901

    Article  PubMed  CAS  Google Scholar 

  15. Rajkumar SV, Jacobus S, Callander N et al (2007) A randomized trial of lenalidomide plus high-dose dexamethasone (RD) versus lenalidomide plus low-dose dexamethasone (Rd) in newly diagnosed multiple myeloma (E4A03): a trial coordinated by the Eastern Cooperative Oncology Group. ASH Annual Meeting Abstracts 110:74

    Google Scholar 

  16. Richardson PG, Weller E, Lonial S et al (2010) Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116:679–686

    Article  PubMed  CAS  Google Scholar 

  17. Richardson PG, Weller E, Jagannath S et al (2009) Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol 27:5713–5719

    Article  PubMed  CAS  Google Scholar 

  18. Tai YT, Dillon M, Song W et al (2008) Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112:1329–1337

    Article  PubMed  CAS  Google Scholar 

  19. Zonder JA, Mohrbacher AF, Singhal S et al (2011) A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 120(3):552–559

    Article  PubMed  Google Scholar 

  20. Richardson PG, Moreau P, Jakubowiak AJ et al (2010) Elotuzumab In combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: interim results of a phase 2 study. ASH Annual Meeting Abstracts 116:986

    Google Scholar 

  21. de Weers M, Tai YT, van der Veer MS et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186:1840–1848

    Article  PubMed  Google Scholar 

  22. Gimsing P, Plesner T, Nahi H et al (2011) A phase I/II, dose-escalation study of daratumumab, A CD38 Mab in patients with multiple myeloma – preliminary safety data. ASH Annual Meeting Abstracts 118:1873

    Google Scholar 

  23. Ikeda H, Hideshima T, Fulciniti M et al (2009) The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res 15:4028–4037

    Article  PubMed  CAS  Google Scholar 

  24. Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD (1990) IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol 144:4226–4230

    PubMed  CAS  Google Scholar 

  25. Voorhees PM, Chen Q, Kuhn DJ et al (2007) Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 13:6469–6478

    Article  PubMed  CAS  Google Scholar 

  26. Neri P, Kumar S, Fulciniti MT et al (2007) Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 13:5903–5909

    Article  PubMed  CAS  Google Scholar 

  27. Bartlett JB, Dredge K, Dalgleish AG (2004) The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4:314–322

    Article  PubMed  CAS  Google Scholar 

  28. Lacy MQ, Hayman SR, Gertz MA et al (2009) Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol 27:5008–5014

    Article  PubMed  CAS  Google Scholar 

  29. Lacy MQ, Allred JB, Gertz MA et al (2011) Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood 118:2970–2975

    Article  PubMed  CAS  Google Scholar 

  30. Richardson PG, Siegel DS, Vij R et al (2011) Randomized, open label phase 1/2 study of pomalidomide (POM) alone or in combination with low-dose dexamethasone (LoDex) in patients (Pts) with relapsed and refractory multiple myeloma who have received prior treatment that includes lenalidomide (LEN) and bortezomib (BORT): phase 2 results. ASH Annual Meeting Abstracts 118:634

    Google Scholar 

  31. Vij R, Wang M, Orlowski R et al (2008) Initial results of PX-171-004, an open-label, single-arm, phase II study of carfilzomib (CFZ) in patients with relapsed myeloma (MM). ASH Annual Meeting Abstracts 112:865

    Google Scholar 

  32. US National Library of Medicine (2011) ClinicalTrials.gov. [online], http://clinicaltrials.gov/ct2/show/NCT01080391

  33. Chauhan D, Tian Z, Zhou B et al (2011) In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res 17:5311–5321

    Article  PubMed  CAS  Google Scholar 

  34. Chauhan D, Singh AV, Aujay M et al (2010) A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 116:4906–4915

    Article  PubMed  CAS  Google Scholar 

  35. Singh AV, Palladino MA, Lloyd GK, Potts BC, Chauhan D, Anderson KC (2010) Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. Br J Haematol 149:550–559

    Article  PubMed  CAS  Google Scholar 

  36. Chauhan D, Singh AV, Ciccarelli B, Richardson PG, Palladino MA, Anderson KC (2010) Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 115:834–845

    Article  PubMed  CAS  Google Scholar 

  37. Richardson PG, Spencer A, Cannell P et al (2011) Phase 1 clinical evaluation of twice-weekly marizomib (NPI-0052), a novel proteasome inhibitor, in patients with relapsed/refractory multiple myeloma (MM). ASH Annual Meeting Abstracts 118:302

    Google Scholar 

  38. Chauhan D, Tian Z, Nicholson B et al (2009) Deubiquitylating enzyme USP-7, a novel therapeutic target in multiple myeloma. ASH Annual Meeting Abstracts 114:610

    Google Scholar 

  39. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113:4667–4676

    Article  PubMed  CAS  Google Scholar 

  40. McMillin DW, Hunter Z, Delmore J et al (2010) MLN4924, a novel investigational NEDD8 activating enzyme inhibitor, exhibits preclinical activity in multiple myeloma and Waldenstrom’s macroglobulinemia through mechanism distinct from existing proteasome inhibitors. ASH Annual Meeting Abstracts 116:2988

    Google Scholar 

  41. Hideshima T, Bradner JE, Wong J et al (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102:8567–8572

    Article  PubMed  CAS  Google Scholar 

  42. Santo L, Hideshima T, Kung AL et al (2010) Selective inhibition of HDAC6 with a new prototype inhibitor (ACY-1215) overcomes bortezomib resistance in multiple myeloma (MM). ASH Annual Meeting Abstracts 116:2997

    Google Scholar 

  43. Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101:540–545

    Article  PubMed  CAS  Google Scholar 

  44. Wolf JL, Siegel D, Matous J et al (2008) A phase II study of oral panobinostat (LBH589) in adult patients with advanced refractory multiple myeloma. ASH Annual Meeting Abstracts 112:2774

    Google Scholar 

  45. Weber DM, Jagannath S, Sobecks R et al (2008) Combination of vorinostat plus bortezomib for the treatment of patients with multiple myeloma who have previously received bortezomib. ASH Annual Meeting Abstracts 112:3711

    Google Scholar 

  46. Richardson P, Weber D, Mitsiades CS et al (2010) A phase I study of vorinostat, lenalidomide, and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: excellent tolerability and promising activity in a heavily pretreated population. ASH Annual Meeting Abstracts 116:1951

    Google Scholar 

  47. Siegel DS, Jagannath S, Hajek R et al (2010) Vorinostat combined with bortezomib in patients with relapsed or relapsed and refractory multiple myeloma: update on the Vantage Study Program. ASH Annual Meeting Abstracts 116:1952

    Google Scholar 

  48. Harrison SJ, Quach H, Link E et al (2011) A high rate of durable responses with romidepsin, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma. Blood 118:6274–6283

    Article  PubMed  CAS  Google Scholar 

  49. Deleu S, Lemaire M, Arts J et al (2009) Bortezomib alone or in combination with the histone deacetylase inhibitor JNJ-26481585: effect on myeloma bone disease in the 5T2MM murine model of myeloma. Cancer Res 69:5307–5311

    Article  PubMed  CAS  Google Scholar 

  50. Richardson P, Chanan-Khan AA, Lonial S et al (2006) A multicenter phase 1 clinical trial of tanespimycin (KOS-953) + bortezomib (BZ): encouraging activity and manageable toxicity in heavily pre-treated patients with relapsed refractory multiple myeloma (MM). ASH Annual Meeting Abstracts 108:406

    Google Scholar 

  51. Richardson PG, Chanan-Khan AA, Lonial S et al (2011) Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br J Haematol 153:729–740

    Article  PubMed  CAS  Google Scholar 

  52. Tai YT, Podar K, Catley L et al (2003) Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3’-kinase/AKT signaling. Cancer Res 63:5850–5858

    PubMed  CAS  Google Scholar 

  53. Hideshima T, Catley L, Raje N et al (2007) Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol 138:783–791

    Article  PubMed  CAS  Google Scholar 

  54. Hideshima T, Catley L, Yasui H et al (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107:4053–4062

    Article  PubMed  CAS  Google Scholar 

  55. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719

    Article  PubMed  CAS  Google Scholar 

  56. Richardson PG, Wolf J, Jakubowiak A et al (2011) Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol 29:4243–4249

    Article  PubMed  CAS  Google Scholar 

  57. Hideshima T, Chauhan D, Richardson P, Anderson KC (2005) Identification and validation of novel therapeutic targets for multiple myeloma. J Clin Oncol 23:6345–6350

    Article  PubMed  CAS  Google Scholar 

  58. Shi Y, Hsu JH, Hu L, Gera J, Lichtenstein A (2002) Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem 277:15712–15720

    Article  PubMed  CAS  Google Scholar 

  59. Raje N, Kumar S, Hideshima T et al (2004) Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 104:4188–4193

    Article  PubMed  CAS  Google Scholar 

  60. Frost P, Moatamed F, Hoang B et al (2004) In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 104:4181–4187

    Article  PubMed  CAS  Google Scholar 

  61. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940

    Article  PubMed  CAS  Google Scholar 

  62. Sun SY, Rosenberg LM, Wang X et al (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65: 7052–7058

    Article  PubMed  CAS  Google Scholar 

  63. Mahindra A, Richardson PG, Hari P et al (2010) Updated results of a phase I study of RAD001 in combination with lenalidomide in patients with relapsed or refractory multiple myeloma with pharmacodynamic and pharmacokinetic analysis. ASH Annual Meeting Abstracts 116:3051

    Google Scholar 

  64. Ghobrial IM, Weller E, Vij R et al (2011) Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol 12:263–272

    Article  PubMed  CAS  Google Scholar 

  65. US National Library of Medicine. http://clinicaltrials.gov/ct2/show/NCT01118689 [Dose Escalation Study of INK128 in Relapsed or Refractory Multiple Myeloma or Waldenstrom Macroglobulinemia].

  66. Cirstea D, Hideshima T, Santo L et al (2010) Disruption of DEPTOR/mTORC1/mTORC2 signaling cascade using a novel selective mtor kinase inhibitor azd8055 results in growth arrest and apoptosis in multiple myeloma cells. ASH Annual Meeting Abstracts 116:791

    Google Scholar 

  67. McMillin DW, Ooi M, Delmore J et al (2009) Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 69:5835–5842

    Article  PubMed  CAS  Google Scholar 

  68. Bergsagel PL, Kuehl WM (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 23:6333–6338

    Article  PubMed  CAS  Google Scholar 

  69. Baughn LB, Di Liberto M, Wu K et al (2006) A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res 66:7661–7667

    Article  PubMed  CAS  Google Scholar 

  70. Santo L, Vallet S, Hideshima T et al (2010) AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta ­activation and RNA polymerase II inhibition. Oncogene 29:2325–2336

    Article  PubMed  CAS  Google Scholar 

  71. Santo L, Vallet S, Hideshima T et al (2008) AT7519, a novel small molecule multi-cyclin dependent kinase inhibitor, induces apoptosis in multiple myeloma VIA GSK3{beta}. ASH Annual Meeting Abstracts 112:251

    Google Scholar 

  72. Dutta-Simmons J, Zhang Y, Gorgun G et al (2009) Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood 114:2699–2708

    Article  PubMed  CAS  Google Scholar 

  73. Evans RP, Naber C, Steffler T et al (2008) The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma. Br J Haematol 140:295–302

    Article  PubMed  CAS  Google Scholar 

  74. Hose D, Reme T, Meissner T et al (2009) Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood 113:4331–4340

    Article  PubMed  CAS  Google Scholar 

  75. Negri JM, McMillin DW, Delmore J et al (2009) In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465. Br J Haematol 147(5):672–676

    Article  PubMed  CAS  Google Scholar 

  76. Shammas MA, Koley H, Bertheau RC et al (2008) Telomerase inhibitor GRN163L inhibits myeloma cell growth in vitro and in vivo. Leukemia 22:1410–1418

    Article  PubMed  CAS  Google Scholar 

  77. Bezieau S, Devilder MC, Avet-Loiseau H et al (2001) High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 18:212–224

    Article  PubMed  CAS  Google Scholar 

  78. Alsina M, Fonseca R, Wilson EF et al (2004) Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 103:3271–3277

    Article  PubMed  CAS  Google Scholar 

  79. Yanamandra N, Colaco NM, Parquet NA et al (2006) Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clin Cancer Res 12:591–599

    Article  PubMed  CAS  Google Scholar 

  80. Lonial S, Francis D, Karanes C et al (2008) A phase I MMRC clinical trial testing the combination of bortezomib and tipifarnib in relapsed/refractory multiple myeloma. ASH Annual Meeting Abstracts 112:3706

    Google Scholar 

  81. Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K (2007) New drugs for myeloma. Oncologist 12:664–689

    Article  PubMed  CAS  Google Scholar 

  82. Mahindra A, Laubach J, Raje N, Munshi N, Richardson PG, Anderson K (2012) Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol 9:135–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mahindra, A., Laubach, J., Mitsiades, C., Richardson, P. (2013). Novel Agents in Multiple Myeloma. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5260-7_9

Download citation

Publish with us

Policies and ethics