Species Interactions of Mycoheterotrophic Plants: Specialization and its Potential Consequences

  • Richard J. Waterman
  • Matthew R. Klooster
  • Heiko Hentrich
  • Martin I. Bidartondo
Chapter

Abstract

Mycoheterotrophic plants are defined by their unique species interactions—the majority have evolved to exploit plant–fungal mutualisms for carbon resources. A phylogenetically diverse group of plants have evolved mycoheterotrophism, and a wide variety of fungi have been exploited. Mycoheterotrophy is often associated with high specificity towards particular fungi, and this is likely to have consequences for other aspects of these plants’ biology, such as distribution patterns, and diversification. It has also been speculated that it will impact the wider network of species interactions that these plants engage in, such as those with pollinators. For example, it has long been hypothesized that mycoheterotrophic plants should be predisposed to either self-pollination or a generalist pollination strategy. We review the evidence for these hypotheses and discuss various case-studies into the interaction networks of these plants. It is clear that the mycoheterotrophic lifestyle has consequences for these plants beyond their nutrition. As such, mycoheterotrophy offers excellent case-studies into the effects of a specialized interaction on multiple aspects of plant ecology and evolution, including pollination, herbivory, and speciation.

Keywords

Sugar Depression Carbohydrate Germinate Assure 

References

  1. Abadie JC, Puttsepp U, Gebauer G, Faccio A, Bonfante P, Selosse MA (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477CrossRefGoogle Scholar
  2. Ackerman JD, Mesler MR (1979) Pollination biology of Listera cordata (Orchidaceae). Am J Bot 66:820–824CrossRefGoogle Scholar
  3. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  4. Albert VA, Struwe L (1997) Phylogeny and classification of Voyria (saprophytic Gentianaceae). Brittonia 49:466–479CrossRefGoogle Scholar
  5. Bakshi TS (1959) Ecology and morphology of Pterospora andromeda. Bot Gaz 120:203–217CrossRefGoogle Scholar
  6. Barrett CF, Freudenstein JV (2008) Molecular evolution of rbcL in the mycoheterotrophic coralroot orchids (Corallorhiza Gagnebin, Orchidaceae). Mol Phylogenet Evol 47:665–679PubMedCrossRefGoogle Scholar
  7. Barrett CF, Freudenstein JV, Taylor DL, Koljalg U (2010) Rangewide analysis of fungal association in the fully mycoheterotrophic Corallorhiza striata complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal Tomentella (Thelephoraceae) across North America. Am J Bot 97:628–643PubMedCrossRefGoogle Scholar
  8. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593CrossRefGoogle Scholar
  9. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  10. Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol Ecol 10:2285–2295PubMedCrossRefGoogle Scholar
  11. Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569PubMedCrossRefGoogle Scholar
  12. Bidartondo MI, Bruns TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549–1560PubMedCrossRefGoogle Scholar
  13. Bidartondo MI, Bruns TD, Weiss M, Sergio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842CrossRefGoogle Scholar
  14. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806CrossRefGoogle Scholar
  15. Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716PubMedGoogle Scholar
  16. Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392PubMedCrossRefGoogle Scholar
  17. Björkman E (1960) Monotropa hypopitys L.—an epiparasite on tree roots. Physiol Plant 13:308–327CrossRefGoogle Scholar
  18. Bougoure J, Ludwig M, Brundrett M, Grierson P (2009) Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycol Res 113:1097–1106PubMedCrossRefGoogle Scholar
  19. Bougoure JJ, Brundrett MC, Grierson PF (2010) Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri. New Phytol 186:947–956PubMedCrossRefGoogle Scholar
  20. Bougoure JJ, Dearnaley J (2005) The fungal endophytes of Dipodium variegatum (Orchidaceae). Austral Mycol 24:15–19Google Scholar
  21. Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287CrossRefGoogle Scholar
  22. Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359PubMedCrossRefGoogle Scholar
  23. Bruns TD, Read DJ (2000) In vitro germination of nonphotosynthetic, myco-heterotrophic plants stimulated by fungi isolated from the adult plants. New Phytol 148:335–342CrossRefGoogle Scholar
  24. Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. S. & E. Scientific and Academic Editions, New York, pp 73–113Google Scholar
  25. Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184PubMedCrossRefGoogle Scholar
  26. Cameron KM (2004) Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol 31:1157–1180PubMedCrossRefGoogle Scholar
  27. Cameron KM (2009) On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae). Ann Bot 104:377–385PubMedCrossRefGoogle Scholar
  28. Cameron KM, Molina MC (2006) Photosystem II gene sequences of psbB and psbC clarify the phylogenetic position of Vanilla (Vanilloideae, Orchidaceae). Cladistics 22:239–248CrossRefGoogle Scholar
  29. Catling PM (1983) Autogamy in eastern Canadian Orchidaceae: a review of current knowledge and some new observations. Nat Can 110:37–53Google Scholar
  30. Catling PM (1990) Auto-pollination in the Orchidaceae. In: Arditti J (ed) Orchid biology, reviews and perspectives V. Timber Press, Portand, pp 121–158Google Scholar
  31. Catling PM, Engels VS (1993) Systematics and distribution of Hexalectris spicata var. arizonica (Orchidaceae). Lindleyana 8:119–125Google Scholar
  32. Cheek M, Williams SA (1999) A review of African saprophytic flowering plants. In: Timberlake J, Kativu S (eds) African plants: biodiversity, taxonomy & uses. Proceedings of the 1997 AETFAT congress, Harare, Zimbabwe. Royal Botanic Gardens, Kew, pp 39–49Google Scholar
  33. Cope ED (1896) The primary factors of organic evolution. Open Court Publishing, ChicagoCrossRefGoogle Scholar
  34. Courty PE, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, Selosse MA (2011) Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol 156:952–961PubMedCrossRefGoogle Scholar
  35. Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46CrossRefGoogle Scholar
  36. Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379:63–66CrossRefGoogle Scholar
  37. Dearnaley J (2006) The fungal endophytes of Erythrorchis cassythoides—is this orchid saprophytic or parasitic? Austral Mycol 25:51–57Google Scholar
  38. Dearnaley JDW, Bougoure JJ (2010) Isotopic and molecular evidence for saprotrophic Marasmiaceae mycobionts in rhizomes of Gastrodia sesamoides. Fungal Ecol 3:288–294CrossRefGoogle Scholar
  39. Dearnaley JDW, Le Brocque AF (2006) Molecular identifcation of the primary root fungal endophytes of Dipodium hamiltonianum (Orchidaceae). Aust J Bot 54:487–491CrossRefGoogle Scholar
  40. Dowie NJ, Hemenway JJ, Miller SL (2012) Identity, genetic lineages and putative hybrids of an obligate mycobiont associated with the mycoheterotrophic plant Pterospora andromedea in the south-central Rocky Mountains. Fungal Ecol 5:137–146CrossRefGoogle Scholar
  41. Dowie NJ, Hemenway JJ, Trowbridge SM, Miller SL (2011) Mycobiont overlap between two mycoheterotrophic genera of Monotropoideae (Pterospora andromedea and Sarcodes sanguinea) found in the Greater Yellowstone Ecosystem. Symbiosis 54:29–36CrossRefGoogle Scholar
  42. Dressler RL (1981) The orchids—natural history and classification. Harvard University Press, Cambridge, Massachusets and LondonGoogle Scholar
  43. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  44. Engler A (1905) Thismia winkleri Engl., eine neue afrikanische Burmanniacee. Bot Jahrb Syst 38:89–91Google Scholar
  45. Engler A, Prantl K (1889) Die natürlichen Pflanzenfamilien. Verlag von Wilhem Engelmann, LeipzigGoogle Scholar
  46. Ernst A, Bernard C (1912) Beiträge zur Kenntnis der Saprophyten Javas. IX. Entwicklungsgeschichte des Embryosacks und des Embryos von Burmannia candida Engl. und B. championii Thw. Ann Jard Bot Buitenzorg 25:161–184Google Scholar
  47. Feild TS, Brodribb TJ (2005) A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell Environ 28:1316–1325CrossRefGoogle Scholar
  48. Franke T (2004) Afrothismia saingei (Burmanniaceae, Thismieae), a new myco-heterotrophic plant from Cameroon. Syst Geogr Pl 74:287–291Google Scholar
  49. Franke T, Beenken L, Doring M, Kocyan A, Agerer R (2006) Arbuscular mycorrhizal fungi of the Glomus-group A lineage (Glomerales; Glomeromycota) detected in myco- heterotrophic plants from tropical Africa. Mycol Prog 5:24–31CrossRefGoogle Scholar
  50. Freudenstein JV (1997) A monograph of Corallorhiza (Orchidaceae). Harvard Pap Bot 10:5–51Google Scholar
  51. Freudenstein JV (1999) A new species of Corallorhiza (Orchidaceae) from West Virginia, U.S.A. Novon 9:511–513CrossRefGoogle Scholar
  52. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233CrossRefGoogle Scholar
  53. Gardes M (2002) An orchid-fungus marriage—physical promiscuity, conflict and cheating. New Phytol 154:4–7CrossRefGoogle Scholar
  54. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223CrossRefGoogle Scholar
  55. George AS (1980) Rhizanthella gardneri R.S. Rogers the underground orchid of Western Australia. Am Orchid Soc Bull 49:631–646Google Scholar
  56. Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504PubMedCrossRefGoogle Scholar
  57. Gould SJ (1970) Dollo on Dollo’s law: irreversibility and the status of evolutionary laws. J Hist Biol 3:189–212PubMedCrossRefGoogle Scholar
  58. Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ (2009) Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol 182:359–366CrossRefGoogle Scholar
  59. Hazard C, Lilleskov EA, Horton TR (2012) Is rarity of pinedrops (Pterospora andromedea) in eastern North America linked to rarity of its unique fungal symbiont? Mycorrhiza 22:393–402PubMedCrossRefGoogle Scholar
  60. Hentrich H, Kaiser R, Gottsberger G (2010) The reproductive biology of Voyria (Gentianaceae) species in French Guiana. Taxon 59:867–880Google Scholar
  61. Hibbett DS (2002) Plant-fungal interactions: when good relationships go bad. Nature 419:345–346PubMedCrossRefGoogle Scholar
  62. Hynson NA, Bruns TD (2009) Evidence of a myco-­heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proc R Soc Lond B 276: 4053–4059CrossRefGoogle Scholar
  63. Hynson NA, Bruns TD (2010) Fungal hosts for mycoheterotrophic plants: a nonexclusive, but highly selective club. New Phytol 185:598–601PubMedCrossRefGoogle Scholar
  64. Imhof S (1999) Root morphology, anatomy and mycotrophy of the achlorophyllous Voyria aphylla (Jacq.) Pers. (Gentianaceae). Mycorrhiza 9:33–39CrossRefGoogle Scholar
  65. Imhof S, Weber HC, Gómez-Pignataro LD (1994) Ein Beitrag zur Biologie von Voyria tenella Hook. und Voyria truncata (Standley) Standley & Steyermark (Gentianaceae). Beiträge zur Biologie der Pflanzen 68:113–123Google Scholar
  66. Jackson AP (2004) A reconciliation analysis of host switching in plant-fungal symbioses. Evolution 58:1909–1923PubMedGoogle Scholar
  67. Jones DL (1985) The self-pollination of Epipogium roseum (D. Don) Lindley. Orchadian 8:91–92Google Scholar
  68. Jones DL (1988) Native orchids of Australia. Reed Books, New South WalesGoogle Scholar
  69. Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653PubMedCrossRefGoogle Scholar
  70. Kato M (1996) Plant-pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. Am J Bot 83:732–743CrossRefGoogle Scholar
  71. Kato M, Tsuji K, Kawakita A (2006) Pollinator and stem- and corm-boring insects associated with mycoheterotrophic orchid Gastrodia elata. Ann Entomol Soc Am 99:851–858CrossRefGoogle Scholar
  72. Kennedy AH, Taylor DL, Watson LE (2011) Mycorrhizal specificity in the fully mycoheterotrophic Hexalectris Raf. (Orchidaceae: Epidendroideae). Mol Ecol 20:1303–1316PubMedCrossRefGoogle Scholar
  73. Keyes WJ, Taylor JV, Apkarian RP, Lynn DG (2001) Dancing together. Social controls in parasitic plant development. Plant Physiol 127:1508–1512PubMedCrossRefGoogle Scholar
  74. Klooster MR, Clark DL, Culley TM (2009) Cryptic bracts facilitate herbivore avoidance in the mycoheterotrophic plant Monotropsis odorata (Ericaceae). Am J Bot 96:2197–2205PubMedCrossRefGoogle Scholar
  75. Klooster MR, Culley TM (2009) Comparative analysis of the reproductive ecology of Monotropa and Monotropsis: two mycoheterotrophic genera in the Monotropoideae (Ericaceae). Am J Bot 96: 1337–1347PubMedCrossRefGoogle Scholar
  76. Kretzer AM, Bidartondo MI, Grubisha LC, Spatafora JW, Szaro TM, Bruns TD (2000) Regional specialization of Sarcodes sanguinea (Ericaceae) on a single fungal symbiont from the Rhizopogon ellenae (Rhizopogonaceae) species complex. Am J Bot 87: 1778–1782PubMedCrossRefGoogle Scholar
  77. Leake JR (1994) The biology of myco-heterotrophic (saprophytic) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  78. Leake JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the ‘saprophytic’ plant myth. Mycologist 19:113–122Google Scholar
  79. Leake JR, McKendrick SL, Bidartondo M, Read DJ (2004) Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytol 163:405–423CrossRefGoogle Scholar
  80. Lehnebach CA, Robertson AW, Hedderley D (2005) Pollination studies of four New Zealand terrestrial orchids and the implication for their conservation. New Zealand J Bot 43:467–477CrossRefGoogle Scholar
  81. Liggio J, Liggio AO (1999) Wild orchids of Texas. University of Texas Press, AustinGoogle Scholar
  82. Lloyd DG (1992) Self-fertilization and cross-fertilization in Plants. 2. The selection of self-fertilization. Int J Plant Sci 153:370–380CrossRefGoogle Scholar
  83. Luoma DL (1987) Synecology of the Monotropoideae within Limpy Rock Research Natural Area, Umpqua National Forest, Oregon. MSc thesis. Corvallis, Oregon State UniversityGoogle Scholar
  84. Maas-van de Kamer H (1995) Triuridiflorae—Gardener’s delight? In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledones: systematics. Royal Botanic Gardens, Kew, pp 287–301Google Scholar
  85. Maas PJM, Maas-van de Kamer H, van Benthem J, Snelders H, Rübsamen T (1986) Burmanniaceae. The New York Botanical Garden, Bronx, New YorkGoogle Scholar
  86. Maas PJM, Ruyters P (1986) Voyria and Voyriela (saprophytic Genrianaceae). Fl Neotrop 41:1–93Google Scholar
  87. Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation and extinction. Syst Biol 56:701–710PubMedCrossRefGoogle Scholar
  88. Malme GOA (1896) Die Burmannien der ersten Regnel’schen Expedition. Bih Kongl Svenska Vetensk Akad Handl 22:1–32Google Scholar
  89. Maloof JE, Inouye DW (2000) Are nectar Robbers cheaters or mutualists? Ecology 81:2651–2661CrossRefGoogle Scholar
  90. Márquez-Guzmán J, Vázquez-Santana S, Engleman EM, Martínez-Mena A, Martínez E (1993) Pollen development and fertilization in Lacandonia schismatica (Lacandoniaceae). Ann Missouri Bot Gard 80:891–897CrossRefGoogle Scholar
  91. Martos F, Dulormne M, Pailler T, Bonfante P, Faccio A, Fournel J, Dubois MP, Selosse MA (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681PubMedCrossRefGoogle Scholar
  92. Matsuda Y, Okochi S, Katayama T, Yamada A, Ito S (2011) Mycorrhizal fungi associated with Monotropastrum humile (Ericaceae) in central Japan. Mycorrhiza 21:569–576PubMedCrossRefGoogle Scholar
  93. McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438CrossRefGoogle Scholar
  94. McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548CrossRefGoogle Scholar
  95. McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247CrossRefGoogle Scholar
  96. Merckx V, Bidartondo MI (2008) Breakdown and delayed cospeciation in the arbuscular mycorrhizal mutualism. Proc R Soc Lond B 275:1029–1035CrossRefGoogle Scholar
  97. Merckx V, Bidartondo MI, Hynson NA (2009) Myco-heterotrophy: when fungi host plants. Ann Bot 104:1255–1261PubMedCrossRefGoogle Scholar
  98. Merckx V, Freudenstein JV (2010) Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytol 185:605–609PubMedCrossRefGoogle Scholar
  99. Merckx V, Stockel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596PubMedCrossRefGoogle Scholar
  100. Merckx VSFT, Janssens SB, Hynson NA, Specht CD, Bruns TD, Smets EF (2012) Mycoheterotrophic interactions are not limited to a narrow phylogenetic range of arbuscular mycorrhizal fungi. Mol Ecol 21:1524–1532PubMedCrossRefGoogle Scholar
  101. Miers J (1841) On some new Brasilian plants allied to the natural order Burmanniaceae. Trans Linn Soc Lond 18:535–556CrossRefGoogle Scholar
  102. Miers J (1866) On Myostoma, a new genus of the Burmanniaceae. Trans Linn Soc Lond 25:461–476CrossRefGoogle Scholar
  103. Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am J Bot 85:1477–1501PubMedCrossRefGoogle Scholar
  104. Montoya JM, Pimm SL, Sole RV (2006) Ecological networks and their fragility. Nature 442:259–264PubMedCrossRefGoogle Scholar
  105. Moola FM, Vasseur L (2004) Recovery of late-seral vascular plants in a chronosequence of post-clearcut forest stands in coastal Nova Scotia. Can Plant Ecol 172:183–197CrossRefGoogle Scholar
  106. Motomura H, Selosse MA, Martos F, Kagawa A, Yukawa T (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581PubMedCrossRefGoogle Scholar
  107. Nicholls WH (1938) A new species of the genus Cryptostylis R.Br. Vic Nat 54:182–183Google Scholar
  108. Nilsson LA (1981) The pollination ecology of Listera ovata (Orchidaceae). Nord J Bot 1:461–480CrossRefGoogle Scholar
  109. Oehler E (1927) Entwicklungsgeschichtlich-zytologische Untersuchungen an einigen saprophytischen Gentianaceen. Planta 3:671–733CrossRefGoogle Scholar
  110. Ogura-Tsujita Y, Gebauer G, Hashimoto T, Umata H, Yukawa T (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc Lond B 276:761–767CrossRefGoogle Scholar
  111. Ogura-Tsujita Y, Yukawa T (2008) Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan. Mycorrhiza 18:331–338PubMedCrossRefGoogle Scholar
  112. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326CrossRefGoogle Scholar
  113. Ornduff R (1969) Reproductive biology in relation to systematics. Taxon 18:121–133CrossRefGoogle Scholar
  114. Pedersen HA, Watthana S, Suddee S, Sasurat S (2004) Breeding system, post-pollination growth, and seed dispersal in Gastrodia exilis (Orchidaceae). Nat Hist Bull Siam Soc 52:9–26Google Scholar
  115. Pfeiffer NE (1918) The sporangia of Thismia americana. Bot Gaz 66:354–363CrossRefGoogle Scholar
  116. Price PW (1980) Evolutionary biology of parasites. Princeton University Press, PrincetonGoogle Scholar
  117. Pringle A, Taylor JW (2002) The fitness of filamentous fungi. Trends Microbiol 10:474–481PubMedCrossRefGoogle Scholar
  118. Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in-situ—a new study technique and its application in terrestrial orchids. Am J Bot 80: 1374–1378CrossRefGoogle Scholar
  119. Raynal-Roques A (1967) Sur un sebaea Africain saprophyte (Gentianaceae). Adansonia 7:207–219Google Scholar
  120. Roy M, Watthana S, Stier A, Richard F, Vessabutr S, Selosse MA (2009a) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol 7:17CrossRefGoogle Scholar
  121. Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Bonfante P, Selosse MA (2009b) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610PubMedCrossRefGoogle Scholar
  122. Rübsamen T (1980) Beiträge zur Mikromorphologie der Testa und zur Embryologie amerikanischer Burmanniaceen und Triuridaceen. Diplomarbeit. Ruhr-Universität, BochumGoogle Scholar
  123. Rudall PJ (2003) Monocot pseudanthia revisited: floral structure of the mycoheterotrophic family Triuridaceae. Int J Plant Sci 164:S307–S320CrossRefGoogle Scholar
  124. Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592PubMedCrossRefGoogle Scholar
  125. Sanders IR (2003) Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends Plant Sci 8:143–145PubMedCrossRefGoogle Scholar
  126. Schoch M (1920) Entwicklungsgeschichtlich-cytologische Untersuchungen über die Pollenbildung und Bestäubung bei einigen Burmannia-Arten. Dissertation. Universität ZürichGoogle Scholar
  127. Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79:1029–1038CrossRefGoogle Scholar
  128. Seidenfaden G, Wood JJ (1992) The orchids of peninsular Malaysia and Singapore. Olsen and Olsen, FredensborgGoogle Scholar
  129. Selosse MA, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426PubMedCrossRefGoogle Scholar
  130. Selosse MA, Richard F, He XH, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628PubMedCrossRefGoogle Scholar
  131. Selosse MA, Weiss M, Jany JL, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) LCM Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844PubMedCrossRefGoogle Scholar
  132. Simard SW (2012) Mycorrhizal networks and seedling establishment in Douglas-fir forests. In: Southworth D (ed) Biocomplexity of plant-fungal interactions. Wiley-Blackwell, Oxford, pp 85–107CrossRefGoogle Scholar
  133. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  134. Solbrig O (1976) On the relative advantages of cross- and self-fertilization. Ann Missouri Bot Gard 63:262–276CrossRefGoogle Scholar
  135. Spitmann A (1975) Entwicklungsgeschichtliche Untersuchungen an Burmannia stuebelii Hieron. et Schltr. Unveröffentlichte Staatsexamensarbeit. Universität BochumGoogle Scholar
  136. Stone BC (1980) Rediscovery of Thismia clavigera (Becc.) F. v. M. (Burmanniaceae). Blumea 26:419–425Google Scholar
  137. Takahashi H, Nishio E, Hayashi H (1993) Pollination biology of the saprophytic species Petrosavia sakuraii (Makino) van Steenis in Central Japan. J Plant Res 106:213–217CrossRefGoogle Scholar
  138. Tanaka H (1978) Pollination biology of Monotropastrum globosum. Jap J Bot 53:201–202Google Scholar
  139. Taylor DL (1997) The evolution of myco-heterotrophy and specificity in some North American orchids. PhD Thesis. University of California, BerkeleyGoogle Scholar
  140. Taylor DL (2004) Myco-heterotroph-fungus marriages—is fidelity over-rated? New Phytol 163:217–221CrossRefGoogle Scholar
  141. Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515PubMedCrossRefGoogle Scholar
  142. Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732CrossRefGoogle Scholar
  143. Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–43CrossRefGoogle Scholar
  144. Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: van der Hijden MG, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 375–414CrossRefGoogle Scholar
  145. Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179PubMedCrossRefGoogle Scholar
  146. Tedersoo L, Pellet P, Koljalg U, Selosse MA (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217PubMedCrossRefGoogle Scholar
  147. Thiele KR, Jordan P (2002) Thismia clavarioides (Thismiaceae), a new species of fairy lantern from New South Wales. Telopea 9:765–771Google Scholar
  148. Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, ChicagoGoogle Scholar
  149. Toftegaard T, Iason GR, Alexander IJ, Rosendahl S, Taylor AFS (2010) The threatened plant intermediate wintergreen (Pyrola media) associates with a wide range of biotrophic fungi in native Scottish pine woods. Biodivers Conserv 19:3963–3971CrossRefGoogle Scholar
  150. Umata H (1995) Seed germination of Galeola altissima, an achlorophyllous orchid, with aphyllophorales fungi. Mycoscience 36:369–372CrossRefGoogle Scholar
  151. Uphof JCT (1929) Beiträge zur Kenntnis der Burmaniacee Apteria aphylla (Nutt.). Barnh Österr Bot Z 78:71–80CrossRefGoogle Scholar
  152. Ushimaru A, Imamura A (2002) Large variation in flower size of the myco-heterotrophic plant, Monotropastrum globosum: effect of floral display on female reproductive success. Plant Spec Biol 17:147–153CrossRefGoogle Scholar
  153. Vogel S (1962) Duftdrüsen im Dienste der Bestäubung. Akad Wiss Abh Math Naturwiss Kl 10:601–763Google Scholar
  154. Vogel S (1978) Pilzmücken als Pilzmimeten. Flora 167:329–398Google Scholar
  155. Wallace GD (1975) Studies of the Monotropoideae (Ericaceae): taxonomy and distribution. Wasmann J Biol 33:1–88Google Scholar
  156. Wallace GD (1977) Studies of the Monotropideae (Ericaceae). Floral nectaries: anatomy and function in pollination ecology. Am J Bot 64:199–206CrossRefGoogle Scholar
  157. Wang CQ, Luo YB, Tai YD, An DJ, Kou Y (2008) Ants pollinate Neottia listeroides (Orchidaceae) in Sichuan. China J Syst Evol 46:836–846Google Scholar
  158. Warming E (1901) Sur quelques Burmanniacées resueillies au Brésil par le Dr. A. Glaziou. Oversigt over det kong. danske Videnskabernes Selskabs Forhandlingar 6:173–188Google Scholar
  159. Waterman RJ, Bidartondo MI (2008) Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59:1085–1096PubMedCrossRefGoogle Scholar
  160. Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:E54–E68PubMedCrossRefGoogle Scholar
  161. Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010PubMedCrossRefGoogle Scholar
  162. Wettstein R (1911) Handbuch der Systematischen Botanik. Dueticke, WienGoogle Scholar
  163. Winther JL, Friedman WE (2007) Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae). Am J Bot 94:1248–1255PubMedCrossRefGoogle Scholar
  164. Winther JL, Friedman WE (2008) Arbuscular mycorrhizal associations in Lycopodiaceae. New Phytol 177:790–801PubMedCrossRefGoogle Scholar
  165. Winther JL, Friedman WE (2009) Phylogenetic affinity of arbuscular mycorrhizal symbionts in Psilotum nudum. J Plant Res 122:485–496PubMedCrossRefGoogle Scholar
  166. Wirz H (1910) Beiträge zur Entwicklungsgeschichte von Sciaphila spec. und von Epirrhizanthes elongata Bl. Dissertation. Universität ZürichGoogle Scholar
  167. Woodward CL, Berry PE, Maas-van de Kamer H, Swing K (2007) Tiputinia foetida, a new mycoheterotrophic genus of Thismiaceae from Amazonian Ecuador, and a likely case of deceit pollination. Taxon 56:157–162Google Scholar
  168. Yagame T, Yamato M, Mii M, Suzuki A, Iwase K (2007) Developmental processes of achlorophyllous orchid. Epipogium roseum: from seed germination to flowering under symbiotic cultivation with mycorrhizal fungus. J Plant Res 120:229–236PubMedCrossRefGoogle Scholar
  169. Yagame T, Yamato M, Suzuki A, Iwase K (2008) Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana. Mycorrhiza 18:97–101PubMedCrossRefGoogle Scholar
  170. Yahara T, Tsukaya H (2008) Oxygyne yamashitae, a new species of Thismiaceae from Yaku Island, Japan. Acta Phytotax Geobot 59:97–104Google Scholar
  171. Yamato M (2001) Identification of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis Makino (Triuridaceae). Mycorrhiza 11:83–88CrossRefGoogle Scholar
  172. Yamato M, Yagame T, Iwase K (2011a) Arbuscular mycorrhizal fungi in roots of non-photosynthetic plants, Sciaphila japonica and Sciaphila tosaensis (Triuridaceae). Mycoscience 52:217–223CrossRefGoogle Scholar
  173. Yamato M, Yagame T, Shimomura N, Iwase K, Takahashi H, Ogura-Tsujita Y, Yukawa T (2011b) Specific arbuscular mycorrhizal fungi associated with non-photosynthetic Petrosavia sakuraii (Petrosaviaceae). Mycorrhiza 21:631–639PubMedCrossRefGoogle Scholar
  174. Yamato M, Yagame T, Suzuki A, Iwase K (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77CrossRefGoogle Scholar
  175. Yoder JI (1999) Parasitic plant responses to host plant signals: a model for subterranean plant-plant interactions. Curr Opin Plant Biol 2:65–70PubMedCrossRefGoogle Scholar
  176. Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. Curr Opin Plant Biol 4: 359–365PubMedCrossRefGoogle Scholar
  177. Yokoyama J, Fukuda T, Tsukaya H (2005) Molecular identification of the mycorrhizal fungi of the epiparasitic plant Monotropastrum humile var. glaberrimum (Ericaceae). J Plant Res 118:53–56PubMedCrossRefGoogle Scholar
  178. Young BW, Massicotte HB, Tackaberry LE, Baldwin QF, Egger KN (2002) Monotropa uniflora: morphological and molecular assessment of mycorrhizae retrieved from sites in the Sub-Boreal Spruce biogeoclimatic zone in central British Columbia. Mycorrhiza 12:75–82PubMedCrossRefGoogle Scholar
  179. Zayed A, Packer L, Grixti JC, Ruz L, Owen RE, Toro H (2005) Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation. Conserv Genet 6:1017–1026CrossRefGoogle Scholar
  180. Zhang DX, Saunders RMK (1999) Burmannia larseniana (Burmanniaceae): a new species from Thailand. Nord J Bot 19:241–244CrossRefGoogle Scholar
  181. Zhang DX, Saunders RMK (2000) Reproductive biology of a mycoheterotrophic species, Burmannia wallichii (Burmanniaceae). Bot J Linn Soc 132:359–367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Richard J. Waterman
    • 1
  • Matthew R. Klooster
    • 2
  • Heiko Hentrich
    • 3
  • Martin I. Bidartondo
    • 4
  1. 1.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
  2. 2.Centre College, Biology ProgramDanvilleUSA
  3. 3.Ecosystem Analysis, Institute for Environmental SciencesUniversity of Koblenz-LandauLandau in der PfalzGermany
  4. 4.Imperial College London and Royal Botanic GardensKewUK

Personalised recommendations