Skip to main content

Modulatory Role of VEGF in Angiogenesis for Cell Survival

  • Chapter
  • First Online:
Cardiac Adaptations

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

  • 1778 Accesses

Abstract

Vascular endothelial growth factor (VEGF) is established to play a crucial role in angiogenesis, cell survival, and thus appear to be important in many pathophysiological processes. VEGF and anti VEGF therapy have been used in treatment of cancer, diabetic retinopathy, cardiovascular disorders, psoriasis, wound healing, age-related macular degeneration, and so on. This review elaborates role of VEGF as cell survival factor in various diseases and several therapeutic strategies involving VEGFs and their receptors. The development of side effects and resistance to therapy involving VEGF needs to be considered while designing new molecules along with molecular modeling techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  2. Pandya NM, Dhalla NS, Santani DD (2006) Angiogenesis—a new target for future therapy. Vasc Pharmacol 44:265–274

    Article  CAS  Google Scholar 

  3. Sato Y (2000) Molecular mechanism of angiogenesis transcription factors and their therapeutic relevance. Pharmacol Ther 87:51–60

    Article  PubMed  CAS  Google Scholar 

  4. Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis 39:212–220

    Article  PubMed  CAS  Google Scholar 

  5. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  PubMed  CAS  Google Scholar 

  6. Liekens S, Clercq ED, Neyts J (2001) Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61:253–270

    Article  PubMed  CAS  Google Scholar 

  7. Suk HB, Sung CL, Soo HC et al (2010) Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3 K/Akt. Invest Ophthalmol Vis Sci 51:1190–1197

    Article  Google Scholar 

  8. Brusselmans K, Bono F, Collen D et al (2005) A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 280:3493–3499

    Article  PubMed  CAS  Google Scholar 

  9. Wada T, Haigh JJ, Ema M et al (2006) Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci 26:6803–6812

    Article  PubMed  CAS  Google Scholar 

  10. Moreira IS, Fernandes PA, Ramos MJ (2007) Vascular endothelial growth factor (VEGF) inhibition—a critical review. Anti-Cancer Agents Med Chem 7:223–245

    Article  CAS  Google Scholar 

  11. Ferrari G, Pintucci G, Seghezzi G et al (2006) VEGF, a prosurvival factor, acts in concert with TGF-1 to induce endothelial cell apoptosis. Proc Natl Acad Sci USA 103:17260–17265

    Article  PubMed  CAS  Google Scholar 

  12. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signalling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022

    Article  PubMed  CAS  Google Scholar 

  13. Tae-Hee L, Seyha S, Masayuki S et al (2007) Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 4:e186. doi:10.1371/journal.pmed.0040186

    Article  Google Scholar 

  14. Soltau J, Drevs J (2009) Mode of action and clinical impact of VEGF signalling inhibitors. Expert Rev Anticancer Ther 9:649–662

    Article  PubMed  CAS  Google Scholar 

  15. Rahimi N (2006) VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front Biosci 11:818–829

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto T, Bohman S, Dixelius J et al (2005) VEGF receptor-2 Y951 signalling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24:2342–2353

    Article  PubMed  CAS  Google Scholar 

  17. Laakkonen P, Waltari M, Holopainen T et al (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67:593–599

    Article  PubMed  CAS  Google Scholar 

  18. Rosen LS (2005) VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist 10:382–391

    Article  PubMed  CAS  Google Scholar 

  19. Sun S, Schiller JH (2007) Angiogenesis inhibitors in the treatment of lung cancer. Crit Rev Oncol Hematol 62:93–104

    Article  PubMed  Google Scholar 

  20. Carpini JD, Karam AK, Montgomery L (2010) Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis 13:43–58

    Article  PubMed  CAS  Google Scholar 

  21. Dong X, Han ZC, Yang R (2007) Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol 62:105–118

    Article  PubMed  Google Scholar 

  22. Burris H, Rocha-Lima C (2008) New therapeutic directions for advanced pancreatic cancer: targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist 13:289–298

    Article  PubMed  CAS  Google Scholar 

  23. Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  24. Yoon-Jin L, Maduekwe UN et al (2010) Differential effects of VEGFR-1 and VEGFR-2 inhibition on tumor metastases based on host organ environment. Cancer Res 70:8357–8367

    Article  Google Scholar 

  25. Tomanek RJ, Sandra A, Zheng W et al (2001) Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res 88:1135–1141

    Article  PubMed  CAS  Google Scholar 

  26. Zentilin L, Puligadda U, Lionetti V et al (2010) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 24:1467–1478

    Article  PubMed  CAS  Google Scholar 

  27. Crawford TN, Alfaro DV, Kerrison JB, Jablon EP (2009) Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 5:8–13

    Article  PubMed  CAS  Google Scholar 

  28. Noe A, Jost M, Lambert V, Lecomte J, Jean-Marie R (2007) Anti-angiogenic therapy of exudative age-related macular degeneration: current progress and emerging concepts. Trends Mol Med 13:345–352

    Article  Google Scholar 

  29. Ng EWM, Adamis AP (2005) Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can J Ophthalmol 40:352–368

    PubMed  Google Scholar 

  30. Paleolog EM (2002) Angiogenesis in rheumatoid arthritis. Arthritis Res 4:S81–S90

    Article  PubMed  Google Scholar 

  31. Ashraf S, Walsh DA (2008) Angiogenesis in osteoarthritis. Curr Opin Rheumatol 20:573–580

    Article  PubMed  Google Scholar 

  32. Lambert C, Mathy-Hartert M, Jean-Emile D et al (2012) Characterization of synovial angiogenesis in osteoarthritis patients and its modulation by chondroitin sulphate. Arthritis Res Ther 14:R58

    Article  PubMed  CAS  Google Scholar 

  33. Azfara RS, Gelfand JM (2008) Psoriasis and metabolic disease: epidemiology and pathophysiology. Curr Opin Rheumatol 20:416–422

    Article  Google Scholar 

  34. Goedkoop AY, Kraan MC, Picavet DI et al (2004) Deactivation of endothelium and reduction in angiogenesis in psoriatic skin and synovium by low dose infliximab therapy in combination with stable methotrexate therapy: a prospective single-centre study. Arthritis Res Ther 6:R326–R334

    Article  PubMed  CAS  Google Scholar 

  35. Lafuente JV, Argandon EG, Mitre B (2006) VEGFR-2 expression in brain injury: its distribution related to brain–blood barrier markers. J Neural Transm 113:487–496

    Article  PubMed  CAS  Google Scholar 

  36. Munaut C, Lorquet S, Pequeux C et al (2012) Differential expression of VEGFR-2 and its soluble form in preeclampsia. PLoS One 7:e33475. doi:10.1371/journal.pone.0033475

    Article  PubMed  CAS  Google Scholar 

  37. Tortora G, Melisi D, Ciardiello F (2004) Angiogenesis: a target for cancer therapy. Curr Pharm Des 10:11–26

    Article  PubMed  CAS  Google Scholar 

  38. Borgstrom P, Hillan KJ, Sriramarao P, Ferrara N (1996) Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res 56:4032–4039

    PubMed  CAS  Google Scholar 

  39. Gotink KJ, Verheul HMW (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13:1–14

    Article  PubMed  CAS  Google Scholar 

  40. Soria JC, Fayette J, Armand JP (2004) Molecular targeting: targeting angiogenesis in solid tumors. Ann Oncol 15:iv223–iv227

    Article  PubMed  Google Scholar 

  41. Schenone S, Bondavalli F, Botta M (2007) Antiangiogenic agents: an update on small molecule VEGFR inhibitors. Curr Med Chem 14:2495–2516

    Article  PubMed  CAS  Google Scholar 

  42. Bjorndahl M, Cao R, Eriksson A, Cao Y (2004) Blockage of VEGF-induced angiogenesis by preventing VEGF secretion. Circ Res 94:1443–1450

    Article  PubMed  Google Scholar 

  43. Udugamasooriya DG, Ritchie C, Brekken RA, Kodadek T (2008) A peptoid antagonist of VEGF receptor 2 recognizes a ‘hotspot’ in the extracellular domain distinct from the hormone-binding site. Bioorg Med Chem 16:6338–6343

    Article  PubMed  CAS  Google Scholar 

  44. Udugamasooriya DG, Dunham G, Ritchie C, Rolf A, Brekken b, Kodadek T (2008) The pharmacophore of a peptoid VEGF receptor 2 antagonist includes both side chain and main chain residues. Bioorg Med Chem Lett 18:5892–5894

    Article  PubMed  CAS  Google Scholar 

  45. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364

    Article  PubMed  CAS  Google Scholar 

  46. Bozec A, Formento P, Lassalle S et al (2007) Dual inhibition of EGFR and VEGFR pathways in combination with irradiation: antitumour supra-additive effects on human head and neck cancer xenografts. Br J Cancer 97:65–72

    Article  PubMed  CAS  Google Scholar 

  47. Larsen AK, Ouaret D, Ouadrani KE, Petitprez A (2011) Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131:80–90

    Article  PubMed  CAS  Google Scholar 

  48. Sumariwalla PF, Cao Y, Hua-Lin W, Feldmann M, Paleolog EM (2003) The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther 5:R32–R39

    Article  PubMed  CAS  Google Scholar 

  49. Roberts N, Kloos B, Cassella M et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650–2657

    Article  PubMed  CAS  Google Scholar 

  50. Medhane D, Ghone S, Mohanraj K, Addepalli V (2010) Conference on chemical biology for drug discovery: perspective and challenges, organized by indian society of chemist and biologist (ISCB) at central drug research institute, Lucknow, India. Part of findings of our work in area of angiogenesis inhibitors was presented in this conference

    Google Scholar 

  51. Neaz MM, Pasha FA, Muddassar M et al (2008) Pharmacophore based 3D-QSAR study of VEGFR-2 inhibitors. Med Chem Res 18:127–142

    Article  Google Scholar 

  52. Lei Y, Haider HK, Shujia J, Sim ESK (2004) Therapeutic angiogenesis: devising new strategies based on past experiences. Basic Res Cardiol 99:121–132

    Article  PubMed  Google Scholar 

  53. Eskens F, Verweij J (2006) The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors. Rev Eur J Cancer 42:3127–3139

    Article  CAS  Google Scholar 

  54. Crawford Y, Ferrara N (2009) Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends Pharmacol Sci 30:624–630

    Article  PubMed  CAS  Google Scholar 

  55. Ellis LM, Hicklin DJ (2008) Pathways Mediating Resistance to Vascular Endothelial Growth Factor Targeted Therapy. Clin Cancer Res 14:6371–6375

    Article  PubMed  CAS  Google Scholar 

  56. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signalling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  57. Hoeben A, Landuyt B, Highley MS et al (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Department of Biotechnology (DBT), Government of India for providing financial support and SPP School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India for providing facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeranjaneyulu Addepalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gatne, D., Addepalli, V., Santani, D.D. (2013). Modulatory Role of VEGF in Angiogenesis for Cell Survival. In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_23

Download citation

Publish with us

Policies and ethics