Skip to main content

Molecular Mechanisms of Cardiac Development

  • Chapter
  • First Online:
Cardiac Adaptations

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

Abstract

The heart is the first organ to develop in order to supply the ever-increasing metabolic demands of the growing embryo. The heart is a unique structure in the body as it is derived from four distinct pools of progenitors: the first heart field (cardiac crescent), the second heart field (SHF), the proepicardial organ and the cardiac neural crest. These progenitors differentiate into the different cell types that comprise the adult heart: cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts, and the conduction system. This complex program of differentiation is controlled by different molecular signaling pathways. A key component of the cardiac development program is the exquisitely coordinated expression of various genes in a spatially and temporally controlled fashion. Genes must be activated or repressed within restricted regions at specific times in order for normal cardiac development to proceed. In large part, this regulation of gene expression is controlled by an evolutionarily conserved set of transcription factors and microRNAs (miRNAs). Historically, the study of cardiac transcription factors has been very informative in understanding the early events in cardiogenesis. The rapidly evolving field of cardiac miRNAs promises to further extend our understanding of cardiac development. In this chapter, we will describe essential cardiac transcription factors and miRNAs and their role in controlling cardiac development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JI (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16:155–165

    Article  PubMed  CAS  Google Scholar 

  2. Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3:544–556

    Article  PubMed  CAS  Google Scholar 

  3. Zaffran S, Frasch M (2002) Early signals in cardiac development. Circ Res 91:457–469

    Article  PubMed  CAS  Google Scholar 

  4. Wu X, Golden K, Bodmer R (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169:619–628

    Article  PubMed  CAS  Google Scholar 

  5. Kwon C, Arnold J, Hsiao EC et al (2007) Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104:10894–10899

    Article  PubMed  CAS  Google Scholar 

  6. Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15:316–327

    Article  PubMed  CAS  Google Scholar 

  7. Pandur P, Lasche M, Eisenberg LM, Kuhl M (2002) Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418:636–641

    Article  PubMed  CAS  Google Scholar 

  8. Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315

    Article  PubMed  CAS  Google Scholar 

  9. Tzahor E, Lassar AB (2001) Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 15:255–260

    Article  PubMed  CAS  Google Scholar 

  10. Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    PubMed  CAS  Google Scholar 

  11. Lyons I, Parsons LM, Hartley L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nk2–5. Genes Dev 9:1654–1666

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280

    PubMed  CAS  Google Scholar 

  13. Schott JJ, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  PubMed  CAS  Google Scholar 

  14. Reamon-Buettner SM, Borlak J (2010) NKX2-5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum Mutat 31:1185–1194

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen HT, Bodmer R, Abmayr SM, McDermott JC, Spoerel NA (1994) D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis. Proc Natl Acad Sci USA 91:7520–7524

    Article  PubMed  CAS  Google Scholar 

  16. Edmondson DG, Lyons GE, Martin JF, Olson EN (1994) Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263

    PubMed  CAS  Google Scholar 

  17. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  PubMed  CAS  Google Scholar 

  18. Kolodziejczyk SM, Wang L, Balazsi K et al (1999) MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr Biol 9:1203–1206

    Article  PubMed  CAS  Google Scholar 

  19. Bi W, Drake CJ, Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255–267

    Article  PubMed  CAS  Google Scholar 

  20. Lin Q, Lu J, Yanagisawa H, Webb R et al (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574

    PubMed  CAS  Google Scholar 

  21. Kodo K, Nishizawa T, Furutani M, et al (2012) Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. Circ J 76:1703–1711

    PubMed  CAS  Google Scholar 

  22. Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  PubMed  CAS  Google Scholar 

  23. Qian L, Huang Y, Spencer CI, Foley A et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  PubMed  CAS  Google Scholar 

  24. Biben C, Harvey RP (1997) Homeodomain factor Nk2–5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 11:1357–1369

    Article  PubMed  CAS  Google Scholar 

  25. Srivastava D, Thomas T, Lin Q et al (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160

    Article  PubMed  CAS  Google Scholar 

  26. Firulli AB, McFadden DG, Lin Q, Srivastava D, Olson EN (1998) Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat Genet 18:266−270

    Article  PubMed  CAS  Google Scholar 

  27. Riley P, Anson-Cartwright L, Cross JC (1998) The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet 18:271–275

    Article  PubMed  CAS  Google Scholar 

  28. Firulli BA, McConville DP, Byers JS et al (2010) Analysis of a Hand1 hypomorphic allele reveals a critical threshold for embryonic viability. Dev Dyn 239:2748–2760 (An official publication of the American Association of Anatomists)

    Article  PubMed  CAS  Google Scholar 

  29. Risebro CA, Smart N, Dupays L et al (2006) Hand1 regulates cardiomyocyte proliferation versus differentiation in the developing heart. Development 133:4595–4606

    Article  PubMed  CAS  Google Scholar 

  30. Yamagishi H, Yamagishi C, Nakagawa O et al (2001) The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev Biol 239:190–203

    Article  PubMed  CAS  Google Scholar 

  31. Firulli BA, Hadzic DB, McDaid JR, Firulli AB (2000) The basic helix-loop-helix transcription factors dHAND and eHAND exhibit dimerization characteristics that suggest complex regulation of function. J Biol Chem 275:33567–33573

    Article  PubMed  CAS  Google Scholar 

  32. Barnes RM, Firulli BA, VanDusen NJ et al (2011) Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel development. Circ Res 108:940–949

    Article  PubMed  CAS  Google Scholar 

  33. Holler KL, Hendershot TJ, Troy SE et al (2010) Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development. Dev Biol 341:291–304

    Article  PubMed  CAS  Google Scholar 

  34. Shen L, Li XF, Shen AD et al (2010) Transcription factor HAND2 mutations in sporadic Chinese patients with congenital heart disease. Chin Med J (Engl) 123:1623–1627

    CAS  Google Scholar 

  35. Cheng Z, Lib L, Li Z et al (2012) Two novel HAND1 mutations in Chinese patients with ventricular septal defect. Clin Chim Acta 413:675–677

    Article  PubMed  CAS  Google Scholar 

  36. Esposito G, Butler TL, Blue GM, Cole AD et al (2011) Somatic mutations in NKX2-5, GATA4, and HAND1 are not a common cause of tetralogy of Fallot or hypoplastic left heart. Am J Med Genet A 155A:2416–2421

    PubMed  Google Scholar 

  37. Wang J, Lu Y, Chen H et al (2011) Investigation of somatic NKX2-5, GATA4 and HAND1 mutations in patients with tetralogy of Fallot. Pathology 43:322–326

    Article  PubMed  CAS  Google Scholar 

  38. Basson CT, Bachinsky DR, Lin RC et al (1997) Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  PubMed  CAS  Google Scholar 

  39. Bruneau BG, Logan M, Davis N et al (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 211:100–108

    Article  PubMed  CAS  Google Scholar 

  40. Bruneau BG, Nemer G, Schmitt JP et al (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721

    Article  PubMed  CAS  Google Scholar 

  41. Liberatore CM, Searcy-Schrick RD, Yutzey KE (2000) Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol 223:169–180

    Article  PubMed  CAS  Google Scholar 

  42. Hiroi Y, Kudoh S, Monzen K et al (2001) Tbx5 associates with Nk2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280

    Article  PubMed  CAS  Google Scholar 

  43. Herrmann F, Bundschu K, Kuhl SJ, Kuhl M (2011) Tbx5 overexpression favors a first heart field lineage in murine embryonic stem cells and in Xenopus laevis embryos. Dev Dyn 240:2634–2645 (An official publication of the American Association of Anatomists)

    Article  PubMed  CAS  Google Scholar 

  44. Brown DD, Martz SN, Binder O et al (2005) Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 132:553–563

    Article  PubMed  CAS  Google Scholar 

  45. Ghosh TK, Song FF, Packham EA et al (2009) Physical interaction between TBX5 and MEF2C is required for early heart development. Mol Cell Biol 29:2205–2218

    Article  PubMed  CAS  Google Scholar 

  46. Maitra M, Schluterman MK, Nichols HA et al (2009) Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol 326:368–377

    Article  PubMed  CAS  Google Scholar 

  47. Liang Q, Molkentin JD (2002) Divergent signaling pathways converge on GATA4 to regulate cardiac hypertrophic gene expression. J Mol Cell Cardiol 34:611–616

    Article  PubMed  CAS  Google Scholar 

  48. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952

    Article  PubMed  CAS  Google Scholar 

  49. Zhou P, He A, Pu WT (2012) Regulation of GATA4 transcriptional activity in cardiovascular development and disease. Curr Top Dev Biol 100:143–169

    Article  PubMed  Google Scholar 

  50. van Berlo JH, Elrod JW, van den Hoogenhof MM et al (2010) The transcription factor GATA-6 regulates pathological cardiac hypertrophy. Circ Res 107:1032–1040

    Article  PubMed  CAS  Google Scholar 

  51. Arceci RJ, King AA, Simon MC et al (1993) Mouse GATA-4: a retinoic acid-inducible GATA- binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 13:2235–2246

    PubMed  CAS  Google Scholar 

  52. Heikinheimo M, Scandrett JM, Wilson DB (1994) Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol 164:361–373

    Article  PubMed  CAS  Google Scholar 

  53. Kuo CT, Morrisey EE, Anandappa R et al (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060

    Article  PubMed  CAS  Google Scholar 

  54. Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11:1061–1072

    Article  PubMed  CAS  Google Scholar 

  55. Charron F, Nemer M (1999) GATA transcription factors and cardiac development. Semin Cell Dev Biol 10:85–89

    Article  PubMed  CAS  Google Scholar 

  56. Watt AJ, Battle MA, Li J, Duncan SA (2004) GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA 101:12573–12578

    Article  PubMed  CAS  Google Scholar 

  57. Zeisberg EM, Ma Q, Juraszek AL et al (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115:1522–1531

    Article  PubMed  CAS  Google Scholar 

  58. Belaguli NS, Sepulveda JL, Nigam V et al (2000) Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators. Mol Cell Biol 20:7550–7558

    Article  PubMed  CAS  Google Scholar 

  59. Sepulveda JL, Belaguli N, Nigam V et al (1998) GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 18:3405–3415

    PubMed  CAS  Google Scholar 

  60. Molkentin JD, Antos C, Mercer B et al (2000) Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev Biol 217:301–309

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz RJ, Olson EN (1999) Building the heart piece by piece: modularity of cis-elements regulating Nk2–5 transcription. Development 126:4187–4192

    PubMed  CAS  Google Scholar 

  62. Rajagopal SK, Ma Q, Obler D et al (2007) Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol 43:677–685

    Article  PubMed  CAS  Google Scholar 

  63. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  PubMed  CAS  Google Scholar 

  64. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238:97–109

    Article  PubMed  CAS  Google Scholar 

  65. Waldo KL, Kumiski DH, Wallis KT et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    PubMed  CAS  Google Scholar 

  66. Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    Article  PubMed  CAS  Google Scholar 

  67. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698

    Article  PubMed  CAS  Google Scholar 

  68. Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268

    Article  PubMed  CAS  Google Scholar 

  69. Tanizawa Y, Riggs AC, Dagogo-Jack S et al (1994) Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism [corrected]. Diabetes 43:935–941

    Article  PubMed  CAS  Google Scholar 

  70. Cai CL, Liang X, Shi Y, Chu PH et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  PubMed  CAS  Google Scholar 

  71. Kang J, Nathan E, Xu SM, Tzahor E, Black BL (2009) Isl1 is a direct transcriptional target of Forkhead transcription factors in second-heart-field-derived mesoderm. Dev Biol 334:513–522

    Article  PubMed  CAS  Google Scholar 

  72. Lin L, Cui L, Zhou W, Dufort D et al (2007) Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci USA 104:9313–9318

    Article  PubMed  CAS  Google Scholar 

  73. Golzio C, Havis E, Daubas P, Nuel G et al (2012) ISL1 directly regulates FGF10 transcription during human cardiac outflow formation. PLoS One 7:e30677

    Article  PubMed  CAS  Google Scholar 

  74. Engleka KA, Manderfield LJ, Brust RD et al (2012) Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res 110:922–926

    Article  PubMed  CAS  Google Scholar 

  75. Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1 + cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  PubMed  CAS  Google Scholar 

  76. Bu L, Jiang X, Martin-Puig S, Caron L et al (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460:113–117

    Article  PubMed  CAS  Google Scholar 

  77. Kwon C, Qian L, Cheng P et al (2009) A regulatory pathway involving Notch1/beta- catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11:951–957

    Article  PubMed  CAS  Google Scholar 

  78. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T- box gene, Tbx1. Nat Genet 27:286–291

    Article  PubMed  CAS  Google Scholar 

  79. Lindsay EA, Vitelli F, Su H et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  PubMed  CAS  Google Scholar 

  80. Merscher S, Funke B, Epstein JA et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  PubMed  CAS  Google Scholar 

  81. Xu H, Morishima M, Wylie JN et al (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    Article  PubMed  CAS  Google Scholar 

  82. Hu T, Yamagishi H, Maeda J et al (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502

    Article  PubMed  CAS  Google Scholar 

  83. Chen L, Fulcoli FG, Ferrentino R et al (2012) Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet 8:e1002571

    Article  PubMed  CAS  Google Scholar 

  84. Zhang Z, Huynh T, Baldini A (2006) Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133:3587–3595

    Article  PubMed  CAS  Google Scholar 

  85. Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475

    Article  PubMed  CAS  Google Scholar 

  86. Chen L, Fulcoli FG, Tang S, Baldini A (2009) Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 105:842–851

    Article  PubMed  CAS  Google Scholar 

  87. Tsuchihashi T, Maeda J, Shin CH et al (2011) Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev Biol 351:62–69

    Article  PubMed  CAS  Google Scholar 

  88. Hiruma T, Hirakow R (1989) Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am J Anat 184:129–138

    Article  PubMed  CAS  Google Scholar 

  89. Manner J (1992) The development of pericardial villi in the chick embryo. Anat Embryol 186:379–385

    Article  PubMed  CAS  Google Scholar 

  90. Nahirney PC, Mikawa T, Fischman DA (2003) Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev Dyn 227:511–523 (An official publication of the American Association of Anatomists)

    Article  PubMed  Google Scholar 

  91. Ishii Y, Garriock RJ, Navetta AM, Coughlin LE, Mikawa T (2010) BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell 19:307–316

    Article  PubMed  CAS  Google Scholar 

  92. Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232

    Article  PubMed  CAS  Google Scholar 

  93. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052

    Google Scholar 

  94. Kraus F, Haenig B, Kispert A (2001) Cloning and expression analysis of the mouse T-box gene Tbx18. Mech Dev 100:83–86

    Article  PubMed  CAS  Google Scholar 

  95. Christoffels VM, Mommersteeg MT, Trowe MO et al (2006) Formation of the venous pole of the heart from an Nk2–5-negative precursor population requires Tbx18. Circ Res 98:1555–1563

    Article  PubMed  CAS  Google Scholar 

  96. Wiese C, Grieskamp T, Airik R et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104:388–397

    Article  PubMed  CAS  Google Scholar 

  97. Wills AA, Holdway JE, Major RJ, Poss KD (2008) Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135:183–192

    Article  PubMed  CAS  Google Scholar 

  98. Cai CL, Martin JC, Sun Y et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108

    Article  PubMed  CAS  Google Scholar 

  99. Christoffels VM, Grieskamp T, Norden J et al (2009) Tbx18 and the fate of epicardial progenitors. Nature 458: E8-9; discussion E9-10

    Google Scholar 

  100. Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857

    PubMed  CAS  Google Scholar 

  101. Wagner N, Wagner KD, Theres H et al (2005) Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms’ tumor transcription factor Wt1. Genes Dev 19:2631–2642

    Article  PubMed  CAS  Google Scholar 

  102. Zhou B, Ma Q, Rajagopal S, Wu SM et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    Article  PubMed  CAS  Google Scholar 

  103. Martinez-Estrada OM, Lettice LA, Essafi A et al (2010) Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet 42:89–93

    Article  PubMed  CAS  Google Scholar 

  104. Smart N, Bollini S, Dube KN et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–644

    Article  PubMed  CAS  Google Scholar 

  105. Katz TC, Singh MK, Degenhardt K et al (2012) Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell 22:639–650

    Article  PubMed  CAS  Google Scholar 

  106. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  107. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  108. Lee RC, Ambros V (2001) An extensive class of small RNAs in caenorhabditis elegans. Science 294:862–864

    Article  PubMed  CAS  Google Scholar 

  109. Boettger T, Braun T (2012) A new level of complexity: the role of MicroRNAs in cardiovascular development. Circ Res 110:1000–1013

    Article  PubMed  CAS  Google Scholar 

  110. Espinoza-Lewis RA, Wang DZ (2012) MicroRNAs in heart development. Curr Top Dev Biol 100:279–317

    Article  PubMed  Google Scholar 

  111. Kwon C, Han Z, Olson EN, Srivastava D (2005) MicroRNA1 influences cardiac differentiation in drosophila and regulates notch signaling. Proc Natl Acad Sci USA 102:18986–18991

    Article  PubMed  CAS  Google Scholar 

  112. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  PubMed  CAS  Google Scholar 

  113. Zhao Y, Ransom JF, Li A et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317

    Article  PubMed  CAS  Google Scholar 

  114. Bernstein E, Kim SY, Carmell MA et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  PubMed  CAS  Google Scholar 

  115. Huang ZP, Chen JF, Regan JN et al (2010) Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects. Arterioscler Thromb Vasc Biol 30:2575–2586

    Article  PubMed  CAS  Google Scholar 

  116. Chen JF, Murchison EP, Tang R et al (2008) Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105:2111–2116

    Article  PubMed  CAS  Google Scholar 

  117. Darnell DK, Kaur S, Stanislaw S et al (2006) MicroRNA expression during chick embryo development. Developmental dynamics: an official publication of the American association of anatomists 235:3156–3165

    Article  CAS  Google Scholar 

  118. Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  Google Scholar 

  119. Sluijter JP, van Mil A, van Vliet P et al (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30:859–868

    Article  PubMed  CAS  Google Scholar 

  120. Ivey KN, Muth A, Arnold J et al (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229

    Article  PubMed  CAS  Google Scholar 

  121. Liu N, Bezprozvannaya S, Williams AH et al (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254

    Article  PubMed  CAS  Google Scholar 

  122. Chen JF, Mandel EM, Thomson JM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  PubMed  CAS  Google Scholar 

  123. Callis TE, Pandya K, Seok HY et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–27786

    Article  PubMed  CAS  Google Scholar 

  124. van Rooij E, Quiat D, Johnson BA et al (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673

    Article  PubMed  CAS  Google Scholar 

  125. van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    Article  PubMed  CAS  Google Scholar 

  126. Cohen-Barak O, Yi Z, Hagiwara N et al (2003) Sox6 regulation of cardiac myocyte development. Nucleic Acids Res 31:5941–5948

    Article  PubMed  CAS  Google Scholar 

  127. Fu JD, Rushing SN, Lieu DK et al (2011) Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 6:e27417

    Article  PubMed  CAS  Google Scholar 

  128. Jayawardena TM, Egemnazarov B, Finch EA et al (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110:1465–1473

    Google Scholar 

  129. Wang J, Greene SB, Bonilla-Claudio M et al (2010) Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell 19:903–912

    Article  PubMed  CAS  Google Scholar 

  130. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  PubMed  CAS  Google Scholar 

  131. Kim GH, Samant SA, Earley JU, Svensson EC (2009) Translational control of FOG-2 expression in cardiomyocytes by microRNA-130a. PLoS One 4:e6161

    Article  PubMed  CAS  Google Scholar 

  132. Xiang R, Lei H, Chen M et al (2012) The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes. Braz J Med Biol Res 45:131–138

    Article  PubMed  CAS  Google Scholar 

  133. Porrello ER, Johnson BA, Aurora AB et al (2011) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109:670–679

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Wigle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roche, P., Czubryt, M.P., Wigle, J.T. (2013). Molecular Mechanisms of Cardiac Development. In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_2

Download citation

Publish with us

Policies and ethics