Skip to main content

Role of Phospholipase C in the α 1-Adrenoceptor Mediated Cardiac Hypertrophy

  • Chapter
  • First Online:
  • 1784 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

Abstract

Phospholipase C (PLC) is considered to mediate the cardiomyocyte hypertrophic response to norepinephrine (NE) through activation of α 1-adrenoceptor (α 1-AR). In this review, the role of PLC isozymes in cardiac hypertrophy is highlighted and some of the mechanisms that are involved in the regulation of PLC isozyme gene expression, protein abundance, and activities are identified. The discussion is focussed to highlight the role of PLC in different experimental models of cardiac hypertrophy, transgenic mice, as well as isolated adult and neonatal cardiomyocytes with particular emphasis on α 1-AR-PLC-mediated hypertrophic signals. On the basis of the information available in the literature, it is suggested that molecular modulation of specific PLC isozymes is involved in the α 1-AR mediated response for the initiation and progression of cardiac hypertrophy. Furthermore, different molecular sites in the NE-induced signal transduction pathway are identified to serve as viable targets for the modification of this adaptive mechanism for maintaining cardiac function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dhalla NS, Heyliger CE, Beamish RE et al (1987) Pathophysiological aspects of myocardial hypertrophy. Can J Cardiol 3:183–196

    PubMed  CAS  Google Scholar 

  2. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D et al (2009) Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 81:429–438

    Article  PubMed  CAS  Google Scholar 

  3. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  PubMed  CAS  Google Scholar 

  4. Woodcock EA, Du XJ, Reichelt ME et al (2008) Cardiac α1-adrenergic drive in pathological remodelling. Cardiovasc Res 77:452–462

    Article  PubMed  CAS  Google Scholar 

  5. Hieble JP, Bylund DB, Clarke DE et al (1995) International union of pharmacology. X. recommendation for nomenclature of α1-adrenoceptors: consensus update. Pharmacol Rev 47:267–270

    PubMed  CAS  Google Scholar 

  6. Graham RM, Perez DM, Hwa J et al (1996) α1-adrenergic receptor subtypes: molecular structure, function, and signaling. Circ Res 78:737–749

    Article  PubMed  CAS  Google Scholar 

  7. Graham RM, Perez DM, Piascik MT et al (1995) Characterization of α1-adrenergic receptor subtypes. Pharmacol Commun 6:15–22

    CAS  Google Scholar 

  8. Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–690

    PubMed  CAS  Google Scholar 

  9. Hawrylyshyn KA, Michelotti GA, Coge F et al (2004) Update on human α1-adrenoceptor subtype signaling and genomic organization. Trends Pharmacol Sci 25:449–455

    Article  PubMed  CAS  Google Scholar 

  10. Jensen BC, Swigart PM, Myagmar BE et al (2007) The α-1A is the predominant α-1-adrenergic receptor in the human heart at the mRNA but not the protein level. Circulation 116:2–289

    Article  Google Scholar 

  11. Tappia PS, Singal T, Dent MR et al (2006) Phospholipid-mediated signaling in diseased myocardium. Future Lipidol 1:701–717

    Article  CAS  Google Scholar 

  12. Tappia PS, Dent MR, Dhalla NS (2006) Oxidative stress and redox regulation of phospholipase D in myocardial disease. Free Radic Biol Med 41:349–361

    Article  PubMed  CAS  Google Scholar 

  13. Tappia PS (2007) Phospholipid-mediated signaling systems as novel targets for treatment of heart disease. Can J Physiol Pharmacol 85:25–41

    Article  PubMed  CAS  Google Scholar 

  14. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  PubMed  CAS  Google Scholar 

  15. Grubb DR, Iliades P, Cooley N et al (2011) Phospholipase C β1b associates with a Shank3 complex at the cardiac sarcolemmal. FASEB J 25:1040–1047

    Article  PubMed  CAS  Google Scholar 

  16. Grubb DR, Luo J, Yu YL et al (2012) Scaffolding protein Homer 1c mediates hypertrophic responses downstream of Gq in cardiomyocytes. FASEB J 26:596–603

    Article  PubMed  CAS  Google Scholar 

  17. Das M, Das DK (2011) Caveolae, caveolin, and cavins: potential targets for the treatment of cardiac disease. Ann Med. doi:10.3109/07853890.2011.577445

    PubMed  Google Scholar 

  18. Gazzerro E, Sotgia F, Bruno C et al (2010) Caveolinopathies: from biology of caveolin-3 to human diseases. Eur J Hum Genet 18:137–145

    Article  PubMed  CAS  Google Scholar 

  19. Lin F, Owens WA, Chen S et al (2001) Targeted α1B-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89:343–350

    Article  PubMed  CAS  Google Scholar 

  20. Theroux TL, Esbenshade TA, Peavy RD, Minneman KP (1996) Coupling efficiencies of human α1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. Mol Pharmacol 50:1376–1387

    PubMed  CAS  Google Scholar 

  21. Akhter SA, Milano CA, Shotwell KF et al (1997) Transgenic mice with cardiac overexpression of α1B-adrenergic receptors. In vivo α1-adrenergic receptor mediated regulation of β- adrenergic signaling. J Biol Chem 272:21253–21259

    Article  PubMed  CAS  Google Scholar 

  22. Otaegui D, Querejeta R, Arrieta A et al (2010) Phospholipase C β4 isozyme is expressed in human, rat, and murine heart left ventricles and in HL-1 cardiomyocytes. Mol Cell Biochem 337:167–173

    Article  PubMed  CAS  Google Scholar 

  23. Kockskämper J, Zima AV, Roderick HL et al (2008) Emerging roles of inositiol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45:128–147

    Article  PubMed  Google Scholar 

  24. Vasilevski O, Grubb DR, Filtz TM et al (2008) Ins(1,4,5)P3 regulates phospholipase C β1 expression in cardiomyocytes. J Mol Cell Cardiol 45:679–684

    Article  PubMed  CAS  Google Scholar 

  25. Wu X, Zhang T, Bossuyt J et al (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardic myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    Article  PubMed  CAS  Google Scholar 

  26. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  27. Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11

    Article  PubMed  CAS  Google Scholar 

  28. Newton AC, Johnson JE (1998) Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta 1376:155–172

    Article  PubMed  CAS  Google Scholar 

  29. Malhotra A, Kang BP, Opawumi D et al (2001) Molecular biology of protein kinase C signaling in cardiac myocytes. Mol Cell Biochem 225:97–107

    Article  PubMed  CAS  Google Scholar 

  30. Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    PubMed  CAS  Google Scholar 

  31. Sabri A, Steinberg ST (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251:97–101

    Article  PubMed  CAS  Google Scholar 

  32. Kawaguchi H, Sano H, Iizuka K et al (1993) Phosphatidylinositol metabolism in hypertrophic rat heart. Circ Res 72:966–972

    Article  PubMed  CAS  Google Scholar 

  33. Shoki M, Kawaguchi H, Okamoto H et al (1992) Phosphatidylinositol and inositol phosphatide metabolism in hypertrophied rat heart. Jpn Circ J 56:142–147

    Article  PubMed  CAS  Google Scholar 

  34. Sakata Y (1993) Tissue factors contributing to cardiac hypertrophy in cardiomyopathic hamsters (BIO14.6): involvement of transforming growth factor-β1 and tissue renin-angiotensin system in the progression of cardiac hypertrophy. Hokkaido Igaku Zasshi 68:18–28

    PubMed  CAS  Google Scholar 

  35. Dent MR, Dhalla NS, Tappia PS (2004) Phospholipase C gene expression, protein content and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol 282:H719–H727

    Google Scholar 

  36. Dent MR, Aroutiounova N, Dhalla NS et al (2006) Losartan attenuates phospholipase C isozyme gene expression in hypertrophied hearts due to volume overload. J Cell Mol Med 10:470–479

    Article  PubMed  CAS  Google Scholar 

  37. Tappia PS, Padua RR, Panagia V et al (1999) Fibroblast growth factor-2 stimulates phospholipase C β in adult cardiomyocytes. Biochem Cell Biol 77:569–575

    Article  PubMed  CAS  Google Scholar 

  38. Jalili T, Takeishi Y, Song G et al (1999) PKC translocation without changes in Gαq and PLC-β protein abundance in cardiac hypertrophy and failure. Am J Physiol 277:H2298–H2304

    PubMed  CAS  Google Scholar 

  39. Giles TD, Sander GE, Thomas MG et al (1996) α-adrenergic mechanisms in the pathophysiology of left ventricular heart failure-an analysis of their role in systolic and diastolic dysfunction. J Mol Cell Cardiol 18:33–43

    Article  Google Scholar 

  40. Prasad K, O’Neil CL, Bharadwaj B (1984) Effect of prolonged prazosin treatment on hemodynamic and biochemical changes in the dog heart due to chronic pressure overload. Jpn Heart J 25:461–476

    Article  PubMed  CAS  Google Scholar 

  41. Strauer BE (1995) Progression and regression of heart hypertrophy in arterial hypertension: pathophysiology and clinical aspects. Z Kardiol 74:171–178

    Google Scholar 

  42. Strauer BE (1988) Regression of myocardial and coronary vascular hypertrophy in hypertensive heart disease. J Cardiovasc Pharmacol 12:S45–S54

    Article  PubMed  Google Scholar 

  43. Strauer BE, Bayer F, Brecht HM et al (1985) The influence of sympathetic nervous activity on regression of cardiac hypertrophy. J Hypertens 3:S39–S44

    Article  CAS  Google Scholar 

  44. Fujita T, Toya Y, Iwatsubo K et al (2001) Accumulation of molecules involved in α1-adrenergic signal within caveolae: caveolin expression and the development of cardiac hypertrophy. Cardiovasc Res 5:709–716

    Article  Google Scholar 

  45. D’Angelo DD, Sakata Y, Lorenz JN et al (1997) Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 94:8121–8126

    Article  PubMed  Google Scholar 

  46. Sakata Y, Hoit BD, Liggett SB et al (1998) Decompensation of pressure-overload hypertrophy in Gαq-overexpressing mice. Circulation 97:1488–1495

    Article  PubMed  CAS  Google Scholar 

  47. Adams JW, Sakata Y, Davis MG et al (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140–10145

    Article  PubMed  CAS  Google Scholar 

  48. Sussman MA, Welch S, Walker A et al (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105:875–886

    Article  PubMed  CAS  Google Scholar 

  49. Mende U, Kagen A, Cohen A et al (1998) Transient cardiac expression of constitutively active Gqα leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 95:13893–13898

    Article  PubMed  CAS  Google Scholar 

  50. Mende U, Kagen A, Meister M et al (1999) Signal transduction in atria and ventricles of mice with transient cardiac expression of activated G protein qα. Circ Res 85:1085–1091

    Article  PubMed  CAS  Google Scholar 

  51. Mende U, Semsarian C, Martins DC et al (2001) Dilated cardiomyopathy in two transgenic mouse lines expressing activated G protein αq: lack of correlation between phospholipase C activation and the phenotype. J Mol Cell Cardiol 33:1477–1491

    Article  PubMed  CAS  Google Scholar 

  52. Wang H, Oestreich EA, Maekawa N et al (2005) Phospholipase C ε modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res 97:1305–1313

    Article  PubMed  CAS  Google Scholar 

  53. Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    Article  PubMed  CAS  Google Scholar 

  54. Anger T, Zhang W, Mende U (2004) Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo. J Biol Chem 279:3906–3915

    Article  PubMed  CAS  Google Scholar 

  55. Zhang W, Anger T, Su J et al (2006) Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte hypertrophy. J Biol Chem 281:5811–5820

    Article  PubMed  CAS  Google Scholar 

  56. Milano CA, Dolber PC, Rockman HA et al (1994) Myocardial expression of a constitutively active α1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 91:10109–10113

    Article  PubMed  CAS  Google Scholar 

  57. Wang BH, Du XJ, Autelitano DJ et al (2000) Adverse effects of constitutively active α1B-adrenergic receptors after pressure overload in mouse hearts. Am J Physiol 279:H1079–H1086

    CAS  Google Scholar 

  58. Du XJ, Fang L, Gao XM et al (2004) Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. J Mol Cell Cardiol 37:979–987

    Article  PubMed  CAS  Google Scholar 

  59. Singal T, Dhalla NS, Tappia PS (2004) Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem Biophys Res Commun 320:1015–1019

    Article  PubMed  CAS  Google Scholar 

  60. Singal T, Dhalla NS, Tappia PS (2006) Norepinephrine-induced changes in gene expression of phospholipase C in cardiomyocytes. J Mol Cell Cardiol 41:126–137

    Article  PubMed  CAS  Google Scholar 

  61. Morris JB, Huynh H, Vasilevski O et al (2006) α1-Adrenergic receptor signaling is localized to caveolae in neonatal rat cardiomyocytes. J Mol Cell Cardiol 41:117–125

    Article  Google Scholar 

  62. Barka T, van der Noen H, Shaw PA (1987) Proto-oncogene fos (c-fos) expression in the heart. Oncogene 1:439–443

    PubMed  CAS  Google Scholar 

  63. Hannan RD, West AK (1991) Adrenergic agents, but not triiodo-L-thyronine induce c-fos and c-myc expression in the rat heart. Basic Res Cardiol 86:154–164

    Article  PubMed  CAS  Google Scholar 

  64. Iwaki K, Sukhatme VP, Shubeita HE et al (1990) α- and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an α1-mediated response. J Biol Chem 265:13809–13817

    PubMed  CAS  Google Scholar 

  65. Komuro I, Kaida T, Shibazaki Y et al (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598

    PubMed  CAS  Google Scholar 

  66. Hefti MA, Harder BA, Eppenberger HM et al (1997) Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol 29:2873–2892

    Article  PubMed  CAS  Google Scholar 

  67. Chiu R, Boyle WJ, Meek J et al (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54:541–552

    Article  PubMed  CAS  Google Scholar 

  68. Lijnen P, Petrov V (1999) Antagonism of the renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. Methods Fund Exp Clin Pharmacol 21:363–374

    Article  CAS  Google Scholar 

  69. Omura T, Yoshiyama M, Yoshida K et al (2002) Dominant negative mutant of c-Jun inhibits cardiomyocyte hypertrophy induced by endothelin 1 and phenylephrine. Hypertension 39:81–86

    Article  PubMed  CAS  Google Scholar 

  70. Singal T, Dhalla NS, Tappia PS (2010) Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes. J Cell Mol Med 14:1824–1835

    Article  PubMed  CAS  Google Scholar 

  71. Singal T, Dhalla NS, Tappia PS (2009) Regulation of c-Fos and c-Jun gene expression by phospholipase C activity in adult cardiomyocytes. Mol Cell Biochem 327:229–239

    Article  PubMed  CAS  Google Scholar 

  72. Small K, Feng JF, Lorenz J et al (1999) Cardiac specific overexpression of transglutaminase II (Gh) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem 23:21291–21296

    Article  Google Scholar 

  73. Dhalla NS, Xu Y-J, Sheu S-S et al (1997) Phosphatidic acid: a potential signal transducer for cardiac hypertrophy. J Mol Cell Cardiol 29:2865–2871

    Article  PubMed  CAS  Google Scholar 

  74. Tappia PS, Yu CH, Di Nardo P et al (2001) Depressed responsiveness of phospholipase C isoenzymes to phosphatidic acid in congestive heart failure. J Mol Cell Cardiol 33:431–440

    Article  PubMed  CAS  Google Scholar 

  75. Henry RA, Boyce SY, Kurz T et al (1995) Stimulation and binding of myocardial phospholipase C by phosphatidic acid. Am J Physiol 269:C349–C358

    PubMed  CAS  Google Scholar 

  76. Tappia PS, Singal T (2009) Regulation of phospholipase C in cardiac hypertrophy. Clin Lipidol 4:79–90

    Article  CAS  Google Scholar 

  77. Schnabel P, Mies F, Nohr T et al (2000) Differential regulation of phospholipase C-β isozymes in cardiomyocyte hypertrophy. Biochem Biophys Res Commun 275:1–6

    Article  PubMed  CAS  Google Scholar 

  78. Arthur JF, Matkovich SJ, Mitchell CJ et al (2001) Evidence for selective coupling of α1-adrenergic receptors to phospholipase C-β1 in rat neonatal cardiomyocytes. J Biol Chem 276:37341–37346

    Article  PubMed  CAS  Google Scholar 

  79. Grubb DR, Vasilevski O, Huynh H et al (2008) The extreme C-terminal region of phospholipase C β1 determines subcellular localization and function; the “b” splice variant mediates α1-adrenergic receptor responses in cardiomyocytes. FASEB J 22:2768–2774

    Article  PubMed  CAS  Google Scholar 

  80. Filtz TM, Grubb DR, McLeod-Dryden TJ et al (2009) Gq-initiated cardiomyocyte hypertrophy is mediated by phospholipase Cβ1b. FASEB J 23:3564–3570

    Article  PubMed  CAS  Google Scholar 

  81. Zhang L, Malik S, Kelley GG et al (2011) Phospholipase C ε scaffolds to muscle-specific A kinase anchoring protein (mAKAPβ) and integrates multiple hypertrophic stimuli in cardiac myocytes. J Biol Chem 286:23012–23021

    Article  PubMed  CAS  Google Scholar 

  82. Ruwhof C, van Wamel JT, Noordzij LA et al (2001) Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal cardiomyocytes. Cell Calcium 29:73–83

    Article  PubMed  CAS  Google Scholar 

  83. Ganguly PK, Lee SL, Beamish RE et al (1989) Altered sympathetic system and adrenoceptors during the development of cardiac hypertrophy. Am Heart J 11:520–525

    Article  Google Scholar 

  84. Xu YJ, Yau L, Yu LP et al (1996) Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes. Biochem Pharmacol 52:1735–1740

    Article  PubMed  CAS  Google Scholar 

  85. Tabbi-Anneni I, Lucien A, Grynberg A (2003) Trimetazidine effect on phospholipid synthesis in ventricular myocytes: consequences in α-adrenergic signaling. Fundam Clin Pharmacol 17:51–59

    Article  PubMed  CAS  Google Scholar 

  86. Wolf RA (1992) Association of phospholipase C-δ with a highly enriched preparation of canine sarcolemmal. Am J Physiol 263:C1021–C1028

    PubMed  CAS  Google Scholar 

  87. Tappia PS, Liu S-Y, Shatadal S et al (1999) Changes in sarcolemmal PLC isozymes in postinfarct congestive heart failure: partial correction by imidapril. Am J Physiol 277:H40–H49

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Infrastructural support for the project was provided by the St. Boniface Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit S. Tappia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tappia, P.S., Adameova, A., Dhalla, N.S. (2013). Role of Phospholipase C in the α 1-Adrenoceptor Mediated Cardiac Hypertrophy. In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_17

Download citation

Publish with us

Policies and ethics