Skip to main content

Formation of a Nitrogen-Rich Atmosphere on Titan: A Review of Pre- and Post-Cassini-Huygens Knowledge

  • Conference paper
  • First Online:

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 35))

Abstract

This paper reviews pre- and post-Cassini-Huygens knowledge on the formation mechanisms of a N2 atmosphere on Titan. Before the arrival of Cassini, it has been generally considered that Titan’s N2 was formed as a result of a major differentiation during accretion and subsequent chemical reactions (such as shock heating and photolysis) in a hot and prolonged proto-atmosphere, mainly composed of NH3 and CH4. However, gravitational data provided by Cassini has revealed that Titan’s core consists of a low-density material, suggesting that it remains relatively cold throughout its history. In this case, Titan’s proto-atmosphere would have been only tenuous and short-lived, implying that the formation of N2 may not have occurred effectively during accretion. Furthermore, the direct measurements of Enceladus’ plumes suggest that the chemical composition of planetesimals that formed the Saturnian satellites was highly likely comet-like, namely large amounts of CO2 rather than CH4. This implies that primordial CO2 in Titan’s proto-atmosphere would have been converted into abundant CO via all of the proposed mechanisms that converted NH3 to N2. Recent experiments suggest that even if early Titan was relatively cold, cometary impacts during the late heavy bombardment can produce sufficient amounts of N2 from NH3 contained in Titan. Nevertheless, impacts also could have produced lots of CO as well as N2. Although the recent findings by Cassini-Huygens support the idea that Titan was formed in a gas-starved Saturnian subnebula, there is no scenario that can account for both the formation of the Saturnian satellites in a gas-starved disk and the generation of a thick N2–rich atmosphere on Titan. We discuss the unanswered problems arisen by Cassini and future studies that attempt to resolve them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, E.Y.: Titan’s thermal structure and the formation of a nitrogen atmosphere. PhD thesis, The University of Michigan (2006)

    Google Scholar 

  • Aikawa, Y., Umebayashi, T., Nakano, T., Miyama, S.M.: Evolution of molecular abundances in proto-planetary disks with accretion flow. Astrophys. J. 519, 705–725 (1999)

    Article  ADS  Google Scholar 

  • Alibert, Y., Mousis, O.: Formation of Titan in Saturn’s subnebula: constraints from Huygens Probe measurements. Astron. Astrophys. 465, 1051–1060 (2007)

    Article  ADS  Google Scholar 

  • Atreya, S.K., Gu, Z.G.: Stability of the Martian atmosphere: is heterogeneous catalysis essential? J. Geophys. Res. 99(E6), 13133–13145 (1994)

    Article  ADS  Google Scholar 

  • Atreya, S.K., Donahue, T.M., Kuhn, W.R.: Evolution of a nitrogen atmosphere on Titan. Science 201, 611–613 (1978)

    Article  ADS  Google Scholar 

  • Atreya, S.K., Lorenz, R.D., Waite, J.H.: Volatile origin and cycles: nitrogen and methane. In: Brown, R.H., Lebreton, J.-P., Waite, J.H. (eds.) Titan from Cassini-Huygens, pp. 177–199. Springer, New York (2009)

    Chapter  Google Scholar 

  • Barr, A.C., Canup, R.M.: Origin of the Ganymede-Callisto dichotomy by impacts during the late heavy bombardment. Nat. Geosci. 3, 164–167 (2010)

    Article  ADS  Google Scholar 

  • Barr, A.C., Citron, R.I., Canup, R.M.: Origin of a partially differentiated Titan. Icarus 209, 858–862 (2010)

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., Crovisier, J., Mumma, M.J., Weaver, H.A.: The composition of cometary volatiles. In: Festou, M.C., Keller, H.C., Weaver, H.A. (eds.) Comets II, pp. 391–423. University of Arizona Press, Tucson (2004)

    Google Scholar 

  • Canup, R.M.: Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature 468, 943–946 (2010)

    Article  ADS  Google Scholar 

  • Canup, R.M., Ward, W.R.: Formation of the Galilean satellites: conditions of accretion. Astron. J. 124, 3404–3423 (2002)

    Article  ADS  Google Scholar 

  • Canup, R.M., Ward, W.R.: A common mass scaling for satellite systems of gaseous planets. Nature 441, 834–839 (2006)

    Article  ADS  Google Scholar 

  • Castillo-Rogez, J.C., Lunine, J.I.: Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37, L20205 (2010)

    ADS  Google Scholar 

  • Fortes, A.D.: Titan’s internal structure and the evolutionary consequences. Planet. Space Sci. 60, 10–17 (2012)

    Article  ADS  Google Scholar 

  • Fortes, A.D., Grindrod, P.M., Trickett, S.K., Voèadlo, L.: Ammonium sulfate on Titan: possible origin and role in cryovolcanism. Icarus 188, 139–153 (2007)

    Article  ADS  Google Scholar 

  • Fukuzaki, S., Sekine, Y., Genda, H., Sugita, S., Kadono, T., Matsui, T.: Impact-induced N2 production from ammonium sulfate: implications for the origin and evolution of N2 in Titan’s atmosphere. Icarus 209, 715–722 (2010)

    Article  ADS  Google Scholar 

  • Gibb, E.L., et al.: An Inventory of interstellar ices toward the embedded protostar W33A. Astrophys. J. 536, 347–356 (2000)

    Article  ADS  Google Scholar 

  • Glein, C.R., Desch, S.J., Shock, E.L.: The absence of endogenic methane on Titan and its implications for the origin of atmospheric nitrogen. Icarus 204, 637–644 (2009)

    Article  ADS  Google Scholar 

  • Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A.: A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    Article  ADS  Google Scholar 

  • Griffith, C.A., Zahnle, K.: Influx of cometary volatiles to planetary moons: the atmospheres of 1000 possible Titans. J. Geophys. Res. 100, 16907–16922 (1995)

    Article  ADS  Google Scholar 

  • Hersant, F., Gautier, D., Tobie, G., Lunine, J.I.: Interpretation of the carbon abundance in Saturn measured by Cassini. Planet. Space Sci. 56, 1103–1111 (2008)

    Article  ADS  Google Scholar 

  • Iess, L., et al.: Gravity field, shape, and moment of inertia of Titan. Science 327, 1367–1369 (2010)

    Article  ADS  Google Scholar 

  • Iro, N., Gautier, D., Hersant, F., Bockelée-Morvan, D., Lunine, J.I.: An interpretation of the nitrogen deficiency in comets. Icarus 161, 511–532 (2003)

    Article  ADS  Google Scholar 

  • Ishimaru, R., Sekine, Y., Matsui, T., Mousis, O.: Oxidizing proto-atmosphere on Titan: constraint from N2 formation by impact shock. Astrophys. J. Lett. 741, L10, 1–6. doi:10.1088/2041-8205/1/L10 (2011)

    Google Scholar 

  • Jones, T.D., Lewis, J.S.: Estimated impact shock production of N2 and organic compounds on early Titan. Icarus 72, 381–393 (1987)

    Article  ADS  Google Scholar 

  • Kring, D.A., Cohen, B.A.: Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J. Geophys. Res. 107, 5009 (2002)

    Google Scholar 

  • Kuramoto, K., Matsui, T.: Formation of a hot proto-atmosphere on the accreting giant icy satellite: implications for the origin and evolution of Titan, Ganymede, and Callisto. J. Geophys. Res. 99, 21183–21200 (1994)

    Article  ADS  Google Scholar 

  • Lammer, H., Kasting, J.F., Chassefiere, Johnson, R.E., Kulikov, Y.N., Tian, F.: Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008)

    Google Scholar 

  • Lefèvre, F., et al.: Heterogeneous chemistry in the atmosphere of Mars. Nature 454, 971–975 (2008)

    Article  ADS  Google Scholar 

  • Lunine, J.I., Stevenson, D.J.: Formation of the Galilean satellites in a gaseous nebula. Icarus 52, 14–39 (1982)

    Article  ADS  Google Scholar 

  • Lunine, J.I., Stevenson, D.J.: Thermodynamics of clathrate hydrate at low and high pressure with application to the outer solar system. Astrophys. J. Suppl. 58, 493–531 (1985)

    Article  ADS  Google Scholar 

  • Lunine, J.I., Stevenson, D.J., Yung, Y.L.: Ethane ocean on Titan. Science 222, 1229–1303 (1983)

    Article  ADS  Google Scholar 

  • Marty, B., Chaussidon, M., Wiens, R.C., Jurewicz, J.G., Burnett, D.S.: A15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011)

    Article  ADS  Google Scholar 

  • Matson, D.L., Castillo, J.C., Lunine, J., Johnson, T.V.: Enceladus’ plume: compositional evidence for a hot interior. Icarus 187, 569–573 (2007)

    Article  ADS  Google Scholar 

  • Matsui, T., Abe, Y.: Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature 322, 526–528 (1986)

    Article  ADS  Google Scholar 

  • McKay, C.P., Scattergood, T.W., Pollack, J.B., Borucki, W.J., Ghyseghem, H.T.V.: High-temperature shock formation of N2 and organics on primordial Titan. Nature 332, 520–522 (1988)

    Article  ADS  Google Scholar 

  • Mosqueira, I., Estrada, P.R.: Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus 163, 198–231 (2003a)

    Article  ADS  Google Scholar 

  • Mosqueira, I., Estrada, P.R.: Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival. Icarus 163, 232–255 (2003b)

    Article  ADS  Google Scholar 

  • Mousis, O., Gautier, D., Bockelée-Morvan, D.: An evolutionary turbulent model of Saturn’s subnebula: implications for the origin of the atmosphere of Titan. Icarus 156, 162–175 (2002)

    Article  ADS  Google Scholar 

  • Niemann, H.B., et al.: The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens Probe. Nature 438, 779–784 (2005)

    Article  ADS  Google Scholar 

  • Okada, H., Kuramoto, K.: Structure of the proto-atmosphere on Titan accreted in a gas-starved circumplanetary disk. In: Abstract of JpGU Meeting, PPS21-10, Makuhari, Japan (2012)

    Google Scholar 

  • Pavlov, A.A., Brown, L.L., Kasting, J.F.: UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, E10, 23267–23287 (2001)

    Article  ADS  Google Scholar 

  • Porco, C.C., et al.: Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006)

    Article  ADS  Google Scholar 

  • Penz, T., Lammer, H., Kulikov, Y.N., Biernat, H.K.: The influence of the solar particle and radiation environment on Titan’s atmosphere evolution. Adv. Space Res. 36, 241–250 (2005)

    Article  ADS  Google Scholar 

  • Prinn, R.G., Fegley, B. Jr.: Kinetic inhibition of CO and N2 reduction in circumplanetary nebula: implications for satellite composition. Astrophys. J. 249, 308–317 (1981)

    Article  ADS  Google Scholar 

  • Prinn, R.G., Fegley, B. Jr.: Solar nebula chemistry: origin of planetary, satellite, and cometary volatiles. In: Atreya, S.K., Pollack, J.B., Matthews, M.S. (eds.) Origin and Evolution of Planetary and Satellite Atmosphere. University of Arizona Press, Tucson (1989)

    Google Scholar 

  • Sagan, C., Chyba, C.: The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221 (1997)

    Article  ADS  Google Scholar 

  • Sasaki, T., Stewart, G.R., Ida, S.: Origin of the different architectures of the Jovian and Saturnian satellite systems. Astrophys. J. 714, 1052–1064 (2010)

    Article  ADS  Google Scholar 

  • Sekine, Y., Genda, H.: Giant impacts in the Saturnian system: a possible origin of diversity in the inner mid-sized satellites. Planet. Space Sci. 63–64, 133–138 (2012)

    Article  Google Scholar 

  • Sekine, Y., Sugita, S., Shido, T., Yamamoto, T., Iwasawa, Y., Kadono, T., Matsui, T.: The role of Fischer-Tropsch catalysis in the origin of methane-rich Titan. Icarus 178, 154–164 (2005)

    Article  ADS  Google Scholar 

  • Sekine, Y, Sugita, S., Shido, T., Yamamoto, T., Iwasawa, Y., Kadono, T., Matsui, T.: An experimental study of Fischer-Tropsch catalysis: implications for impact phenomena and nebular chemistry. Meteor. Planet. Sci. 41(5), 715–729 (2006)

    Article  ADS  Google Scholar 

  • Sekine, Y., Genda, H., Sugita, S., Kadono, T., Matsui, T.: Replacement and late formation of atmospheric N2 on undifferentiated Titan by impacts. Nat. Geosci. 4, 359–362 (2011)

    Article  ADS  Google Scholar 

  • Smith, B.A., et al.: The Galilean satellites and Jupiter: Voyager 2 imagsing science results. Science 206, 927–950 (1979)

    Article  ADS  Google Scholar 

  • Smith, B.A., et al.: Encounter with Saturn: Voyager 1 imaging science results. Science 212, 163–191 (1981)

    Article  ADS  Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., Levson, H.F.: Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459–461 (2005)

    Article  ADS  Google Scholar 

  • Trainer, M.G., et al.: Organic haze on Titan and the early Earth. PNAS 103, 18035–18042 (2005)

    Article  ADS  Google Scholar 

  • Trigo-Rodriguez, J.M., Martin-Torres, F.J.: Clues on the importance of comets in the origin and evolution of the atmospheres of Titan and Earth. Planet. Space Sci. 60, 3–9 (2012)

    Article  ADS  Google Scholar 

  • Waite, J.H., et al.: Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009)

    Article  ADS  Google Scholar 

  • Wolf, E.T., Toon, O.B.: Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328, 1266–1268 (2010)

    Article  ADS  Google Scholar 

  • Wong, A.-S., Morgan, C.G., Yung, Y.L.: Evolution of CO on Titan. Icarus 155, 382–393 (2002)

    Article  Google Scholar 

  • Wood, J.A.: Pressure and temperature profiles in the solar nebula. Space Sci. Rev. 92, 87–93 (2000)

    Article  ADS  Google Scholar 

  • Yung, Y.L., Allen, M., Pinto, J.P.: Photochemistry of the atmosphere of Titan: Comparison between model and observations. Astrophys. J. Supp. 55, 465–506 (1984)

    Article  ADS  Google Scholar 

  • Zahnle, K.J., Kasting, J.F., Pollack, J.B.: Evolution of a steam atmosphere during earth’s accretion. Icarus 74, 62–97 (1988)

    Article  ADS  Google Scholar 

  • Zahnle, K., Schenk, P.M., Levision, H.F.: Cratering rates in the outer solar system. Icarus 163, 263–289 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Josep M. Trigo-Rodriguez for the arrangements of this book and the meeting on “Nitrogen in Planetary Systems: the early evolution of the atmospheres of terrestrial planets” in Barcelona, September 2011. Support from Grants in Aid from Japan Society for the Promotion of Science is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Sekine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Sekine, Y. (2013). Formation of a Nitrogen-Rich Atmosphere on Titan: A Review of Pre- and Post-Cassini-Huygens Knowledge. In: Trigo-Rodriguez, J., Raulin, F., Muller, C., Nixon, C. (eds) The Early Evolution of the Atmospheres of Terrestrial Planets. Astrophysics and Space Science Proceedings, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5191-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5191-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5190-7

  • Online ISBN: 978-1-4614-5191-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics