Skip to main content

Foundations of Mechanics of Heterogeneous Media for Accretion Disks

  • Chapter
  • First Online:
Turbulence and Self-Organization

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 389))

  • 1373 Accesses

Abstract

Here attention is focused on one of the fundamental problems in astrophysics—the formation of protoplanetary accretion disks around late-type stars whose special case is the origin of the Solar system. Particular attention is given to the development of a semiempirical approach to modeling heterogeneous turbulence in the accretion disk that surrounded the proto-Sun at the early stage of its existence with the goal of reducing the number of assumptions in the models used. We formulate a complete system of equations of two-phase multicomponent mechanics by taking into account the relative motion of the phases, coagulation processes, phase transitions, chemical reactions, and radiation. Basically, it is designed for schematized formulations and numerical solution of specific model problems on mutually consistent modeling of the structure, dynamics, thermal regime, and chemical composition of the circumsolar disk at various stages of its evolution. The processes in the disk medium in the presence of the developed turbulent motions of a coagulating gas suspension are addressed that eventually contribute to the formation of a dust subdisk near the equatorial plane of the proto-Sun within the model under consideration and the emergence of hydrodynamic and then gravitational instability in it followed by the formation of dust clusters.

For an adequate phenomenological description of turbulent flows in a gas–dust disk, we perform the probability-theoretic Favre averaging of the stochastic equations of heterogeneous mechanics and derive the defining gradient relations for the turbulent interphase diffusion and heat fluxes as well as for the “relative” and Reynolds stress tensors needed to close the hydrodynamic equations of mean motion. We investigate the influence of the inertial effects of dust particles on the characteristics of turbulence in the disk, in particular, on the additional generation of turbulent energy by large particles. We propose a semiempirical method of modeling the turbulent viscosity coefficient in a two-phase disk by taking into account the inverse effects of dispersed phase and heat transport on the development of turbulence with the goal of modeling the vertically inhomogeneous thermohydrodynamic structure of the dust subdisk and the ambient gas.

For a steady motion when solid particles settle down to the central plane of the disk under gravity, we investigate a parametric method of moments for solving the Smoluchowski integro-differential coagulation equation for the particle size distribution function that is based on the a priori belonging of the sought-for distribution function to a certain parametric class of distributions. In addition, we analyze the possible regime of limiting saturation of the subdisk atmosphere by fine dust particles that is responsible for the intensification of various coagulation mechanisms in a turbulized medium. The results of this chapter open new possibilities for constructing improved (and more realistic) models of stellar-planetary cosmogony, thereby providing a new approach to solving the fundamental problem of the origin and evolution of the Solar system and planetary systems around other stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cuzzi, J.N., Weidenschilling, S.J.: In: Lauretta, D., Leshin, L.A., McSween, H. (eds.) Particle-Gas Dynamics and Primary Accretion in Meteorites and the Early Solar System II, p. 353. University of Arizona, Tuscon (2006)

    Google Scholar 

  • Russell, S.S., Hartmann, L.A., Cuzzi, J.N., et al.: Timescales of the solar protoplanetary disk. In: Lauretta, D., Leshin, L.A., McSween, H. (eds.) Meteorites and the Early Solar System II, p. 233. University of Arizona, Tucson (2006a)

    Google Scholar 

  • Schneider, G., Smith, B.A., Becklin, E.E., et al.: NICMOS imaging of the HR 4796A circumstellar disk. Astrophys. J. 513, L127 (1999)

    Article  ADS  Google Scholar 

  • Abramovich, G.N., Girshovich, T.A.: On the diffusion of heavy particles in turbulent gas flows. Dokl. Akad. Nauk USSR 212, 573 (1973)

    Google Scholar 

  • Alfven, H., Arrhenius, G.: Evolution of the Solar System. Sci. & Techn. Inf. Office, NASA, Washington, D.C. (1976)

    Google Scholar 

  • Armitage, P.J., Livio, M., Pringle, J.E.: Episodic accretion in magnetically layered protoplanetary disks. Mon. Not. R. Astron. Soc. 324, 705 (2001b)

    Article  ADS  Google Scholar 

  • Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1 (1998b)

    Article  ADS  Google Scholar 

  • Barenblatt, G.I., Golitsyn, G.S.: Local Structure of Developed Dust Storms. Moscow State University, Moscow (in Russian) (1973)

    Google Scholar 

  • Barenblatt, G.I., Golitsyn, G.S.: Local structure of mature dust storms. J. Atmos. Sci. 31, 1917 (1974)

    Article  ADS  Google Scholar 

  • Barge, P., Sommeria, J.: Did planet formation begin inside persistent gaseous vortices? Astron. Astrophys 295, L1 (1995a)

    ADS  Google Scholar 

  • Beckwith, S.V.W., Henning, T., Nakagawa Y. In: Mannings, V., Boss, A.P., Rassell, S.S. (eds.) Dust Properties and Assembly of Large Particles in Protoplanetary Disks in Protostars and Planets IV, Tucson Univ. Ariz. Press, 533 (2000)

    Google Scholar 

  • Bisnovaty-Kogan, G.S., Lovelace, R.V.E.: Advective accretion disks and related problems including magnetic fields. New Astron. Rev 45, 663 (2001b)

    Article  ADS  Google Scholar 

  • Bryden, G., Chen, X., Lin, D., et al.: Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth. Astrophys. J. 514, 344 (1999b)

    Article  ADS  Google Scholar 

  • Busroyd, R.: Flow of Gas with Suspended Particles, Mir, Moscow (in Russian) (1975)

    Google Scholar 

  • Cabot, W., Canuto, V.M., Hubickyj, O., Pollack, J.B.: The role of turbulent convection in the primitive solar nebula. Icarus 69, 423 (1987)

    Article  ADS  Google Scholar 

  • Cameron, A.G.W.: Accumulation processes in the primitive solar nebula. Icarus 18, 407–450 (1973)

    Article  ADS  Google Scholar 

  • Cameron, A.G.W.: Formation and evolution of the primitive solar nebula. In: Black, D.C., Matthews, M.S. (eds.) Protostars and Planets II, pp. 1073–1099. Univ. of Arizona Press, Tucson, AZ (1985)

    Google Scholar 

  • Cameron, A.G.W.: The primitive solar accretion disc and formation of planets. In: Dermott, S.F. (ed.) The Origin of the Solar System. pp. 49–75. NY (1978)

    Google Scholar 

  • Сhavanis, P.-H.: Trapping of Dust by Coherent Vortices in the Solar Nebula,//arXiv:astro-ph/9912087, 16, 1. (1999)

    Google Scholar 

  • Cuzzi, J.N.: Blowing in the Wind: III. Accretion of dust rims by chondrule-sized particles in a turbulent protoplanetary nebula. Icarus 168, 484 (2004b)

    Article  ADS  Google Scholar 

  • Cuzzi, J.N., Dobrovolskis, A.R., Champney, J.M.: Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106, 102 (1993)

    Article  ADS  Google Scholar 

  • Cuzzi, J.N., Davis, S.S., Dobrovolskis, A.R.: Blowing in the Wind. II. Creation and Redistribution of Refractory Inclusions in a Turbulent Protoplanetary Nebula. Icarus 166, 385 (2003b)

    Article  ADS  Google Scholar 

  • Danon, H., Wolfshtein, M., Hetsroni, G.: Numerical calculation of two—phase turbulent round jet. Int. Multiphase Flow 3, 223 (1977)

    Article  MATH  Google Scholar 

  • Derevich, I.V.: Influence of an admixture of large particles on turbulent characteristics of a gas suspension in channels. PMTF 2, 70 (1994)

    Google Scholar 

  • Dominik, C., Blum, J., Cuzzi, J., Wurm, G.: Growth of dust as the initial step toward planet formation in protostars and planets V. Arizona, AZ (2007b)

    Google Scholar 

  • Dorofeeva, V.A., Makalkin, A.B..: Evolution of the Early Solar System. Cosmochemical and Physical Aspects. Editorial URSS, Moscow (in Russian) (2004b)

    Google Scholar 

  • Dubrulle, B.: A turbulent closure model for thin accretion disks. Astron. Astrophys. 266, 592 (1992)

    ADS  Google Scholar 

  • Dubrulle, B.: Differential rotation as a source of angular momentum transfer in the solar nebula. Icarus 106, 59 (1993b)

    Article  ADS  Google Scholar 

  • Dubrulle, B., Morfill, G., Sterzic, M.: The dust subdisk in the protoplanetary nebula. Icarus 114, 237 (1995)

    Article  ADS  Google Scholar 

  • Dullemond, C.P., Dominik, C.: Dust coagulation in protoplanetary disks: A rapid depletion of small grains. Astron. Astrophys. 434, 971 (2005b)

    Article  ADS  MATH  Google Scholar 

  • Eardley, D.M., Lightman, A.P., Payne, D.G., Shapiro, S.L.: Accretion disks around massive black holes: Persistent emission spectra. Astrophys. J. 234, 53 (1978b)

    Article  ADS  Google Scholar 

  • Elghobashi, S.E., Abou-Arab, T.W.: A second-order turbulence model for two-phase flows. Heat Transfer 5, 219 (1982)

    Google Scholar 

  • Elghobashi, S.E., Abou-Arab, T.W.: A two-equation turbulence model for two-phase flows. Phys. Fluids 26, 931 (1983)

    Article  ADS  MATH  Google Scholar 

  • Epstein, P.S.: On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710 (1924)

    Article  ADS  Google Scholar 

  • Favre, A.: Statistical equations of turbulent gases in problems of hydrodynamics and continuum mechanics. SIAM, Philadelphia (1969b). 231

    Google Scholar 

  • Fridman, F.M.: To the dynamics of a viscous differentially rotating gravitating medium. Pis’ma Astron. Zh. 15, 1122 (1989b)

    ADS  Google Scholar 

  • Fridman, A.M., Boyarchuck, F.F., Bisikalo, D.V., et al.: The collective mode and turbulent viscosity in accretion disks. Phys. Lett. A 317, 181 (2003b)

    Article  MathSciNet  ADS  Google Scholar 

  • Fuks, N.A.: Mechanics of Aerosols. Akad. Nauk USSR, Moscow (in Russian) (1955)

    Google Scholar 

  • Garaud, P., Barriere-Fouchet, L., Lin, D.N.C.: Individual and collective behavior of dust particles in a protoplanetary nebula. Astroph. J. 603, 292 (2005)

    Article  ADS  Google Scholar 

  • Gavin, L.B., Naumov, V.A., Shor, V.V.: Numerical analysis of a gas jet with heavy particles based on a two-parameter turbulence model. PMTF 1, 62 (1984)

    Google Scholar 

  • Goldrich, P., Ward, W.R.: The formation of planetesimals. Astrophys. J. 183, 1051 (1973b)

    Article  ADS  Google Scholar 

  • Goodmann, J., Pindor, B.: Secular instability and planetesimal formation in the dust layer. Icarus 148, 537 (2000)

    Article  ADS  Google Scholar 

  • Gor’kavyi, N.N., Fridman, A.M.: Physics of Planetary Rings. Nauka, Moscow (in Russian) (1994b)

    Google Scholar 

  • Gorbis, Z.R.: Heat Exchange and Hydromechanics of Disperse Through Flows. Energiya, Moscow (in Russian) (1970)

    Google Scholar 

  • Gore, R.A., Crowe, C.T.: Effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow 15, 279 (1989)

    Article  Google Scholar 

  • Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • Hayashi, C., Nakazawa, K., Nakagawa, Y.: In: Black, D.C., Matthews, M.S. (eds.) Formation of the Solar System In Protostars and Planets II, University of Arizona, Tucson, 1100. (1985)

    Google Scholar 

  • Hazlehurst, J., Sargent, W.L.W.: Astrophys J. 130, 276 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Hersant, F., Dudrulle, B., Hure, J.-M.: Turbulence in Circumstellar Disks, Astron. Astrophys. (2004) Manuscript No. 3549, 1

    Google Scholar 

  • Hirschfelder, D., Curtiss, C., Bird, R.: Molecular Theory of Gases and Liquids. John Wiley and Sons, New York and London (1954b)

    MATH  Google Scholar 

  • Hunter, S.C., Cherry, S.S., Kliegel, J.R., Waldman, C.H.: Gas-particle nozzle flow with reaction and particle size change. AIAA Paper 37, 14 (1981)

    Google Scholar 

  • Ievlev, V.M.: Approximate equations of turbulent motion for an incompressible fluid. Izv. Akad. Nauk USSR Ser MZhG 1, 91 (1970)

    Google Scholar 

  • Ievlev, V.M.: Turbulent Motion of High-Temperature Continuous Media. Nauka, Moscow (in Russian) (1975c)

    Google Scholar 

  • Kartushinskii, A.I.: Transport of an inertial admixture in a two-phase turbulent jet. Izv. Akad. Nauk USSR Ser MZhG 1, 36 (1984)

    Google Scholar 

  • Kolesnichenko, A.V.: To the theory of turbulence in planetary atmospheres: numerical simulation of structural parameters. Astron. Vestn. 29, 133 (1995a)

    ADS  Google Scholar 

  • Kolesnichenko, A.V.: Stefan-Maxwell Relations and Heat Flow for Turbulent Multicomponent Continuous Media in Problems of Modern Mechanics. Moscow State University, Moscow (in Russian) (1998b). 52

    Google Scholar 

  • Kolesnichenko, A.V.: Modeling turbulent transport coefficients in a gas-dust accretion disk. Astron. Vestn. 34, 516 (2000a)

    Google Scholar 

  • Kolesnichenko, A.V.: Hydrodynamics aspects of modeling mass transfer and coagulation in a turbulent accretion disk. Astron. Vestn. 35, 139 (2001a)

    Google Scholar 

  • Kolesnichenko, A.V.: Synergetic Approach to Describing Stationary-Nonequilibrium Turbulence of Astrophysical Systems in Modern Problems of Mechanics and Space Physics. Fizmatlit, Moscow (in Russian) (2003a). 123

    Google Scholar 

  • Kolesnichenko, A.V.: On the synergetic formation mechanism of coherent structures in the continuum theory of developed turbulence. Astron. Vestn. 38, 405 (2004c)

    Google Scholar 

  • Kolesnichenko, A.V., Maksimov, V.M.: Generalized darcy filtering law as a corollary of the Stefan-Maxwell relations for a heterogeneous medium. Mat. Mod. 13, 3 (2001)

    MathSciNet  MATH  Google Scholar 

  • Kolesnichenko, A.V., Marov, M.Y.: Turbulence of Multicomponent Media. MAIK-Nauka, Moscow (in Russian) (1999g)

    Google Scholar 

  • Kolesnichenko, A.V., Marov, M.Y.: Fundamentals of mechanics of heterogenic media with application to circumsolar protoplanetary cloud: Influence of solid paticles on the disc turbulence. Solar System Res. 40(1), 2–62 (2006b)

    Article  ADS  Google Scholar 

  • Kolmogorov, A.N.: Equations of turbulent motion for an incompressible fluid. Izv. Akad. Nauk. USSR Ser. fiz. 6, 56 (1942c)

    Google Scholar 

  • Kolmogorov, A.N.: On a new version of the gravitational theory of motion of suspended sediments, vestn. MGU 3, 41 (1954b)

    MathSciNet  Google Scholar 

  • Kusaka, T., Nakano, N., Hayashi, C.: Growth of Solid Particles in the Primordial Solar Nebula. Progr. Theor. Phys 44, 1580 (1970)

    Article  ADS  Google Scholar 

  • Laikhtman, G.L.: Physics of the Atmospheric Boundary Layer. Gidrometeoizdat, Leningrad (in Russian) (1970b)

    Google Scholar 

  • Landau, L.D., Lifshitz, V.M.: Hydrodynamics. Nauka, Moscow (in Russian) (1988d)

    Google Scholar 

  • Lee, K.W.: Change of particle size distribution during brownian coagulation. J. Colloid Interface Sci. 92, 38 (1983)

    Article  Google Scholar 

  • Leonard, A.: Energy cascade in large eddy simulations of turbulent fluid flows. Adv. Geophys. A18, 237 (1974)

    ADS  Google Scholar 

  • Lin, D.N.C., Papaloizou, J.: On the structure and evolution of the primordial solar nebula. Mon. Not. Roy. Astron. Soc. 191, 37–48 (1980)

    ADS  Google Scholar 

  • Lissauer, J.J., Stewart, G.R.: In: Levy, E.H., Lunine, I.J. (eds.) Growth of Planets from Planetesimals in Protostars and Planets III, Univ. Arizona Press, Tucson, 1061 (1993)

    Google Scholar 

  • Loginov, V.I.: Dehydration and Desalinization of Oil. Khimiya, Moscow (in Russian) (1979)

    Google Scholar 

  • Lynden-Bell, D., Pringle, J.E.: The evolution of viscous discsand the origin of the nebular variables. Mon. Not. Roy. Astron. Soc. 168, 603–637 (1974a)

    ADS  Google Scholar 

  • Makalkin, A.B..: Radial compaction of the dust subdisk in a protoplanetary disk as possible way to gravitational instability. Lunar Planet. Sci. 25, 827 (1994b)

    ADS  Google Scholar 

  • Makalkin, A.B..: Problems of the Evolution of Protoplanetary Disks in Modern Problems of Mechanics and Space Physics. Fizmatlit, Moscow (in Russian) (2003a). 402

    Google Scholar 

  • Makalkin, A.B..: Peculiarities of the evolution of a viscous circumsolar protoplanetary disk. Astron. Vestn. 38, 559 (2004a)

    Google Scholar 

  • Makalkin, A.B.., Dorofeeva, V.A.: Structure of the protoplanetary accretion disk around the sun at the T tauri phase. I Initial data, equations, and modeling methods. Astron. Vestn. 29, 99 (1995a)

    ADS  Google Scholar 

  • Makalkin, A.B.., Dorofeeva, V.A.: Structure of the protoplanetary accretion disk around the sun at the T tauri phase. II. Results of model calculations. Astron. Vestn. 30, 496 (1996)

    Google Scholar 

  • Marov, M.Y., Kolesnichenko, A.V.: Introduction to Planetary Aeronomy. Nauka, Moscow (in Russian) (1987e)

    Google Scholar 

  • Marov, M.Y., Kolesnichenko, A.V.: Mechanics of Turbulence of Multicomponent Gases. Kluwer Academic Publishers, Dordrecht–Boston–London (2002b)

    Google Scholar 

  • Mazin, I.P.: Theoretical estimation of the coagulation coefficient of droplets in clouds. Trudy TsAO 95, 12 (1971)

    Google Scholar 

  • Mednikov, E.P.: Turbulent Transport and Sedimentation of Aerosols. Nauka, Moscow (in Russian) (1981)

    Google Scholar 

  • Melville, W.K., Bray, K.N.C.: A Model of the Two-Phase Turbulent Jet. Int. J. Heat Mass Transfer 22, 647 (1979)

    Article  ADS  MATH  Google Scholar 

  • Monin, A.S., Yaglom, A.M.: Statistical Hydrodynamics, vol. I. Gidrometeoizdat, St. Petersburg (in Russian) (1992e)

    Google Scholar 

  • Morkovin, M.V.: Effects of Compressibility on Turbulent Flow in Mechanics of Turbulence. Gordon and Breach, New York (1961b). 367

    Google Scholar 

  • Nakagawa, Y., Nakagawa, K., Hayashi, C.: Growth and sedimentation of dust grains in the primordial solar nebula. Icarus 45, 517 (1981b)

    Article  ADS  Google Scholar 

  • Nakagawa, Y., Sekiya, M., Hayashi, C.: Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67, 375 (1986a)

    Article  ADS  Google Scholar 

  • Natta, A., Testi, L., Calvet, N., et al.: Dust in Protoplanetary Disks: Properties and Evolution in Protostars and Planets V. Arizona, AZ (2007b)

    Google Scholar 

  • Nigmatulin, R.I.: Foundations of Mechanics of Heterogeneous Media. Nauka, Moscow (in Russian) (1978)

    Google Scholar 

  • Nomura, H.: Structure and instabilities of an irradiated viscous protoplanetary disks. Astrophys. J. 567, 587 (2002)

    Article  ADS  Google Scholar 

  • Pollack, J.B., McKay, C.P., Cristofferson, B.M.: A calculation of a rosseland mean opacity of dust grains in primordial solar system nebulae. Icarus 64, 473 (1985)

    Article  ADS  Google Scholar 

  • Prigogine, I., Defay, R.: Chemical Thermodynamics. Longmans Green and Co., London–New York–Toronto (1954d)

    Google Scholar 

  • Prigogine, I., Stengers, I.: Time. Chaos. Quantum. Toward Solving the Paradox of Time. Progress Publishing House, Moscow (in Russian) (1994c)

    Google Scholar 

  • Richard, D., Zahn, J.-P.: Turbulence in differentially rotating flow. What can be learned from the Couette-Taylor experiment. Astron. Astrophys. 347, 734 (1999b)

    ADS  Google Scholar 

  • Ruden, S.P., Pollack, J.B.: The dynamical evolution of the protosolar nebula. Asrophys. J. 375, 740 (1991)

    Article  ADS  Google Scholar 

  • Safronov, V.S.: Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. Nauka, Moscow (in Russian) (1969b)

    Google Scholar 

  • Safronov, V.S.: Current status of the theory of the Earth’s origin. Dokl. Akad. Nauk USSR, Phys. Earth 6, 5 (1982b)

    Google Scholar 

  • Safronov, V.S.: Evolution of the dust component of the circumsolar protoplanetary disk. Astron. Vestn. 21, 216 (1987b)

    ADS  Google Scholar 

  • Safronov, V.S., Guseinov, K.M.: On the possibility of in situ comet formation. Astron. Vestn. 1990(24), 248 (1990)

    ADS  Google Scholar 

  • Schmidt, O.Y.: Four Lectures on the Earth’s Origin, 3rd edn. USSR Academy of Sciences, Moscow (in Russian) (1957b)

    Google Scholar 

  • Schmitt, W., Henning, T., Mucha, R.: Dust evolution in protoplanetary accretion disks. Astron. Astrophys. 325, 569 (1997)

    ADS  Google Scholar 

  • Sekiya, M., Nakagawa, Y.: Settling of dust particles and formation of planetesimals. Prog. Theor. Phys. Suppl. 96, 141 (1988)

    Article  ADS  Google Scholar 

  • Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337 (1973b)

    ADS  Google Scholar 

  • Shakura, N.I., Sunyaev, R.A., Zilitinkevich, S.S.: On the turbulent energy transport in accretion disk. Astron. Astrophys. 62, 179 (1978a)

    ADS  Google Scholar 

  • Shapiro, S., Teukolsky, S.: Black Holes, White Dwarfs, and Neutron Stars. John Wiley & Sons, New York (1983a)

    Book  Google Scholar 

  • Shraiber, A.A., Gavin, L.B., Naumov, V.A., Yatsenko, V.P.: Hydromechanics of Two-Component Flows with Polydisperse Material. Naukova Dumka, Kiev (in Russian) (1980)

    Google Scholar 

  • Shraiber, A.A., Milyutin, V.N., Yatsenko, V.P.: Turbulent Flows of a Gas Suspension. Naukova Dumka, Kiev (in Russian) (1987)

    Google Scholar 

  • Smoluchowski, M.: Three Lectures on Diffusion, Brownian Molecular Motion, and Coagulation of Colloidal Particles. Brownian Motion in Colloid Coagulation. ONTI, Moscow (in Russian) (1936)

    Google Scholar 

  • Soo, S.L., Ihrig, H.K., Kouh, A.F.: Experimental determination of statistical properties of two-phase turbulent motion. Trans. ASME J. Basic Engng. 82, 609 (1960)

    Article  Google Scholar 

  • Stepinski, T.F., Valageas, P.: Global evolution of solid matter in turbulent protoplanetary disks. I. Aerodynamics of solid particles. Astron. Astrophys. 309, 301 (1996)

    ADS  Google Scholar 

  • Stepinski, T.F., Valageas, P.: Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals. Astron. Astrophys. 319, 1007 (1997)

    ADS  Google Scholar 

  • Sternin, L.E., Shraiber, A.A.: Multiphase Flows of Gas with Particles. Мashinostroenie, Moscow (in Russian) (1994)

    Google Scholar 

  • Sternin, L.E., Maslov, B.N., Shraiber, A.A., Podvysotskii, A.M.: Two-Phase Mono- and Polydisperse Flows of Gas with Particles. Mashinostroenie, Moscow (in Russian) (1980)

    Google Scholar 

  • Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8 (1851)

    ADS  Google Scholar 

  • Takeuchi, T., Lin, D.N.C.: Radial flow of dust particles in accretion disks. Astrophys. J. 581, 1344 (2002)

    Article  ADS  Google Scholar 

  • Takeuchi, T., Lin, D.N.C.: Surface out in optically thick dust disks by the radiation pressure. Astrophys. J. 593, 524 (2003)

    Article  ADS  Google Scholar 

  • Tanga, P., Babiano, A., Dubrulle, B.: Forming planetesimals in vortices. Icarus 121, 158 (1996a)

    Article  ADS  Google Scholar 

  • Tassoul, J.-L.: Theory of Rotating Stars. Princeton University, Princeton (1979a)

    Google Scholar 

  • Toomre, A.: On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217 (1964b)

    Article  ADS  Google Scholar 

  • Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University, Cambridge (1956c)

    MATH  Google Scholar 

  • Varaksin, A.Y.: Turbulent Flows of Gas with Solid Particles. Fizmatlit, Moscow (in Russian) (2003)

    Google Scholar 

  • Vereshchagin, I.P., Levitov, V.I., Mirzobekyan, G.Z., Pashin, M.M.: Foundations of Electrogasdynamics of Disperse Systems. Energiya, Moscow (in Russian) (1974)

    Google Scholar 

  • Voloshchuk, V.M.: Kinetic Theory of Coagulation. Gidrometeoizdat, Moscow (in Russian) (1984)

    Google Scholar 

  • Voloshchuk, V.M., Sedunov, Y.S.: Coagulation Processes in Disperse Systems. Gidrometeoizdat, Leningrad (in Russian) (1975)

    Google Scholar 

  • Wadhwa, M., Amelin, Y., Davis, A.M., et al.: From Dust to Planetesimals: Implications for the Solar Protoplanetary Disk from Short-Lived Radionuclides in Protostars and Planets V. Arizona, AZ (2007b)

    Google Scholar 

  • Wasson, J.T.: Meteorites: Their Record of Early Solar-System History. Freeman, New York (1985)

    Google Scholar 

  • Watanabe, S., Nakagawa, Y., Nakazawa, K.: Cooling and quasi-static contraction of the primitive solar nebula after gas accretion. Astrophys. J. 358, 282 (1990)

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J.: Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57 (1977)

    ADS  Google Scholar 

  • Weidenschilling, S.J.: Dust to planetesimals: Settling and coagulation in the solar nebula. Icarus 44, 172 (1980)

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J.: Evolution of grains in a turbulent solar nebula. Icarus 60, 553 (1984)

    Article  ADS  Google Scholar 

  • Whipple, F.L.: From Plasma to Planet, London (1972)

    Google Scholar 

  • Willacy, K., Klahr, H.H., Millar, T.J., Henning, T.: Gas and Grain Chemistry in a Protoplanetary Disk. Astron. Astrophys. 338, 995 (1998)

    ADS  Google Scholar 

  • Woods, J.D., Drake, J.C., Goldsmith, P.: Coalescence in a turbulent cloud. Quart. J. Roy. Met. Soc. 98, 135 (1972)

    ADS  Google Scholar 

  • Yarin, L.P., Hetsroni, G.: Turbulence intensity in dilute two-phase flow -3. The particles-turbulence interaction in dilute two-phase flow. Int. J. Multiphase Flow 20, 27 (1994)

    Article  MATH  Google Scholar 

  • Youdin, A.N., Goodman, J.: Streaming Instabilities in Protoplanetary Disks, arXiv: Astro-ph/0409263, 1, 1 (2004)

    Google Scholar 

  • Youdin, A.N., Shu, F.: Planetesimal formation by gravitational instability. Astrophys. J. 580, 494 (2002b)

    Article  ADS  Google Scholar 

  • Zaichik, L.I., Varaksin, A.Y.: Influence of the wake behind large particles on the intensity of carrier-flow turbulence. TVT 37, 1004 (1999)

    Google Scholar 

  • Zel’dovich, Y.B.: On the friction of fluids between rotating cylinders. Proc. Roy. Soc. London A374, 299 (1981b)

    MathSciNet  ADS  Google Scholar 

  • Zuev, Y.V., Lepeshinskii, I.F.: Mathematical model of a two-phase turbulent jet. Izv. Akad. Nauk USSR Ser. MZhG 6, 69 (1981)

    Google Scholar 

  • Khlopkov, Y.I., Zharov, V.A., Gorelov, S.L.: Coherent Structures in a Turbulent Boundary Layer. Moscow Physicotechnical Institute, Moscow (in Russian) (2002d)

    Google Scholar 

  • Marov, M.Y., Kolesnichenko, A.V.: Chaotic and ordered structures in the developed turbulence. In: Fridman, A.M., Marov, M.Y. (eds.) Astrophysical Disks: Collective and Stochastic Phenomena, p. 23. Springer, The Netherlands (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marov, M.Y., Kolesnichenko, A.V. (2013). Foundations of Mechanics of Heterogeneous Media for Accretion Disks. In: Turbulence and Self-Organization. Astrophysics and Space Science Library, vol 389. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5155-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5155-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5154-9

  • Online ISBN: 978-1-4614-5155-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics