Skip to main content

Turbulent Chaos and Self-Organization in Cosmic Natural Media

  • Chapter
  • First Online:
  • 1528 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 389))

Abstract

Natural objects evolve from initial chaotic motions to order through a fascinating internal self-organization, which is embedded in their structure. The dynamics of this process is the focus of this work. They can be subjected to temporal and spatial variations or retain their stability for a long time. Ordered structures surround us ubiquitously on Earth; numerous examples of self-organization are observed in space. Turbulent flows characterized by a great variety of dynamical processes are widespread in the surrounding world. We mainly focus on the problems of macroscopic modeling these natural flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The two-period motion corresponds to a trajectory on the torus (two-dimensional tube) on which the appearance of chaos is forbidden by the well-known Poincare—Bendixson theorem.

  2. 2.

    Indeed, most recent measurements made with the heterodyne detector of the Herschel Space Telescope found the D/H ratio in the comet Hartley-2 to be 1,57x10−4 - similar to that in the Earth’s oceans (Hartough et al., Nature 478, pp. 218–220, 2011).

References

  • Acuna, M.H., Connerney, J.E.P., Ness, N.F., et al. (1999) Global Distribution of Crystal Magnetism Discovered by the Mars Global Surveyor MAG/ER Experiment, Science, 284, 790.

    Article  ADS  Google Scholar 

  • Afanasenko, T.S. and Rodin, A.V. (2005) Influence of Collisional Line Broadening on the Spectra and Fluxes of Thermal Radiation in the Lower Atmosphere of Venus, Astron. Vestn., 39, 214.

    Google Scholar 

  • Alexander, C.M.O.D., Boss, A.P., Keller, L.P., et al. (2007) Astronomical and Meteoritic Evidence for the Nature of Interstellar Dust and Its Processing in Protoplanetary Discs in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Alpher, R.A., Bethe, H., and Gamov, G. (1948) The Origin of Chemical Elements, Phys. Rev., 73, 803.

    Article  ADS  Google Scholar 

  • Amelin, Y., Krot, A.N., Hutcheon, I.D., Ad Ulyanov, A.A. (2002) Pb isotopic ages of chondrules and Ca, Al-rich inclusions. Science v. 297, pp. 1678-1683.

    Article  ADS  Google Scholar 

  • Y. Amelin, A. Kaltenbach, T. Iizuka, C.H. Stirling, T.R. Ireland, M. Petaev and S.B. Jacobsen (2010). Importance of uranium isotope variations for chronology of the Solar System’s first solids. 41th Lunar Planet. Sci. Conf., Abstract #1648.

    Google Scholar 

  • Anders, E. and Owen, T. (1977) Origin and Abundances of Volatiles, Science, 198, 453.

    Article  ADS  Google Scholar 

  • Andersen, J. (1991) Accurate Masses and Radii of Normal Stars, Astron. Astrophys. Rev., Dirac House, Temple Back, Bristol, 3, 91.

    Google Scholar 

  • Anderson, J.D., Lau, E.L., Sjogren, W.L., et al. (1996) Gravitational Constraints on the Internal Structure of Ganymede, Nature, 384, 541.

    Article  ADS  Google Scholar 

  • Anderson, J.D., Schubert, G., Jacobsen, R.A., et al. (1998) Distribution of Rock, Metals, and Ices in Callisto, Science, 280, 1573.

    Google Scholar 

  • Anderson, R.C., Dohm, J.M., Golombek, M.P., et al. (2001) Primary Centers and Secondary Concentrations of Tectonic Activity through Time in the Western Hemisphere of Mars, J. Geophys. Res., 106, 20563.

    Article  ADS  Google Scholar 

  • Anishchenko, A.A. (1990) Complex Oscillations in Simple Systems, Nauka, Moscow (in Russian).

    Google Scholar 

  • Anishchenko, A.A., Vadivasova, T.E., and Shimanskii-Gaier, L. (2005) Dynamic and Static Description of Oscillatory Systems, "Regular and Chaotic Dynamics" Research Center, Institute of Computer Research, Moscow-Izhevsk (in Russian).

    Google Scholar 

  • Armitage, P.J., Livio, M., and Pringle, J.E. (2001) Episodic Accretion in Magnetically Layered Protoplanetary Disks, Mon. Not. R. Astron. Soc, 324, 705.

    Article  ADS  Google Scholar 

  • Arnold, V.I. (1963a) Small Denominators and the Problem of Stability of Motion in Classical and Celestial Mechanics, Usp. Mat. Nauk, 18, 85.

    Google Scholar 

  • Arnold, V.I. (1963b) Small Denominators and the Problems of Stability of Motion in Classical and Celestial Mechanics//Usp. Mat. Nauk. 1963. vol.18. Issue 6. pp. 91-192.

    Google Scholar 

  • Artymowicz, P. (1997) Beta Pictoris: An Early Solar System?, Ann. Rev. Earth Planet. Sci., 25, 175.

    Article  ADS  Google Scholar 

  • Atreya, S.K., Mahaffy, P.R., Niemann, H.B., et al. (2003) Composition and Origin of the Atmosphere of Jupiter - an Update, and Implications for the Extrasolar Giant Planets, Planet. Space Sci., 51, 105.

    Article  ADS  Google Scholar 

  • Atreya, S.K., Pollack, J.B., and Matthews, M.S. (1989) Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson.

    Google Scholar 

  • Avduevsky, V.S, Borodin N.F., Kuznetsov V.V., et al. (1968) Temperature, Pressure, and Density of the Venusian Atmosphere from Venura-4 Measurements, Dokl. Akad. Nauk USSR, 179, 310.

    Google Scholar 

  • Avduevsky, V.S, Zavelevich, F.S., Marov, M.Ya., et al. (1971) Numerical Simulation of Radiative-Convective Heat Exchange in the Venusian Atmosphere, Kosmich. Issled., 9, 280.

    ADS  Google Scholar 

  • Avduevsky, V.S., Golovin, Yu.M., Zavelevich, F.S., et al. (1976) Preliminary Results of the Study of the Light Regime in the Atmosphere and on the Surface of Venus, Kosmich. Issled., 14, 735.

    ADS  Google Scholar 

  • Avduevsky, V.S., Marov, M.Ya., and Rozhdestvensky, M.K. (1970) A Tentative Model of the Atmosphere of the Planet Venus Based on the Results of Measurements of of Venera 5 and 6, J. Atmos. Sci., 27, 561.

    Article  ADS  Google Scholar 

  • Ayres, T.R. (1981) Thermal Bifurcation in the Solar Outer Atmosphere, Astrophys. J., 244, 1064.

    Article  ADS  Google Scholar 

  • Balbus, S.A. and Hawley, J.F. (1998) Instability, Turbulence, and Enhanced Transport in Accretion Disks, Rev. Mod. Phys., 70, 1.

    Article  ADS  Google Scholar 

  • Ballesteros-Paredes, J., Klessen, R.S., Mac Low, M.-M., and Vazquez-Semadeni, E. (2007) Molecular Cloud Turbulence and Star Formation in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Barenblatt, G.I. (1955) On the Motion of Suspended Particles in a Turbulent Flow Occupying a Half-Space or a Plane Open Channel of Finite Depth, Prikl. Mat. Mekh., 19, 61.

    MathSciNet  MATH  Google Scholar 

  • Barrow-Green, J. (1996) Poincare and the Three Body Problem, Princeton University Press, Princeton.

    Google Scholar 

  • Basri, G. (2000) Observations of Brown Dwarfs, Ann. Rev. Astron. Astrophys., 38, 485.

    Article  ADS  Google Scholar 

  • Batchelor, G.K. (1953) The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Belotserkovskii O.M. (1994) Numerical Simulation in Continuum Mechanics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Belotserkovskii, O.M. (1997) Numerical Experiment in Turbulence: From Order to Chaos, Nauka, Moscow (in Russian).

    Google Scholar 

  • Benner, L A.M. (1997) Triton in Encyclopedia of Planetary Sciences, Ed. by J.H. Shirley and R.W. Fairbridge, Chapman and Hall, London.

    Google Scholar 

  • Bergin, E.A., Aikawa, Yu., Blake, G.A., and van Dishoeck, E.F. (2007) The Chemical Evolution of Protoplanetary Disks in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Bershadskii, A.G. (1988) Virtual Statistical Equilibrium and Quasi-Stationary Spectra of Homogeneous Turbulence, Zh. Eksp. Teor. Fiz., 94, 117.

    ADS  Google Scholar 

  • Bershadskii, A.G. (1989) Fractal Structure of Turbulent Vortices, Zh. Eksp. Teor. Fiz., 96, 625.

    ADS  Google Scholar 

  • Bethe, H.A. (1966) The Theory of Supernovae in Essays in Nuclear Astrophysics, Ed. by A.G. Masevich, Mir, Moscow, 418.

    Google Scholar 

  • Bezard, B., de Bergh, C., Fegley, B., et al. (1993) The Abundance of Sulfur Dioxide below the Clouds of Venus, Geophys. Res. Lett., 20, 1587.

    Article  ADS  Google Scholar 

  • Binney, J. and Merrifield, M. (1998) Galactic Astronomy, Princeton University Press, Princeton.

    Google Scholar 

  • Bibring, J.-P., Langevin, Y., Gendrin, A. and the OMEGA team (2005) Mars surface diversity as revealed by the OMEGA. Mars Express observations, Science, 307, 1576.

    Google Scholar 

  • Bisikalo, D.V., Marov, M.Ya., Shematovich, V.I., and Strel’nitskij, V.S. (1989) The flow of the Subliming Gas in the Near-Nuclear (Knudsen) Layer of the Cometary Coma, Adv. Space Res., 9, 53.

    Article  ADS  Google Scholar 

  • Bisnovaty-Kogan, G.S. and Lovelace, R.V.E. (2001) Advective Accretion Disks and Related Problems Including Magnetic Fields, New Astron. Rev, 45, 663.

    Google Scholar 

  • Black, D.С. (1999) Extra-solar Planets: Searching for Other Planetary Systems in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 941.

    Google Scholar 

  • Blum, J., Wurm, G. Experiments of sticking, restructuring and fragmentation of preplanetary dust aggregates, Icarus, 143, 138.

    Google Scholar 

  • Boice, D.C. and Huebner, W. (1999) Physics and Chemistry of Comets in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 519.

    Google Scholar 

  • Bonnell, I.A., Larson, R.B., and Zinnecker, H. (2007) The Origin of the Initial Mass Function in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Borner, G. (1993) The Early Universe, Springer, Heidelberg.

    Google Scholar 

  • Bouvier et al. (2007) Geochim. Cosmochim. Acta., 71, pp. 1583-1604.

    Article  ADS  Google Scholar 

  • Bouvier, A., Wadhva, M., and Janey, P. (2008) Pb-Pb isotope systematics in the Allende chondrule. Goldshmidt Conference Abstracts, July 13-18, Vancouver, Canada, A11.

    Google Scholar 

  • Bouvier, A. and Wadhwa, M. (2009). Synchronizing the absolute age and relative clocks: Pb-Pb and Al-Mg systematics in CAIs from the Allende and NWA 2364 CV3 chondrites. 40th Lunar and Planet. Sci. Conf. Abstract #2184

    Google Scholar 

  • Bouvier, A. and Wadhwa, M. (2010) Pb-Pb isotope dating of the unique basaltic achondrite NWA 2976. 41th Lunar and Planet. Sci. Conf. Abstract #1489.

    Google Scholar 

  • Bouwman, J., Meeus, G., de Koter, A., et al. (2001) Processing of Silicate Dust Grains in Herbig Ae/Be Systems, Astron. Astrophys., 375, 950.

    Article  ADS  Google Scholar 

  • Bouwman, J., van Boekel, R., Min, M., et al. (2005) 10 μm Spectroscopic Survey of Herbig Ae Star Disks: Grain Growth and Crystallization, Astron. Astrophys., 437, 189.

    Article  ADS  Google Scholar 

  • Brain, D.A. and Jakosky, B.M. (1998) Atmospheric Loss since the Onset of the Martian Geologic Record: Combined Role of Impact Erosion and Sputtering, J. Geophys. Res., 103, 22689.

    Article  ADS  Google Scholar 

  • Britt, D.T. and Lebofsky, L.A. (1999) Asteroids in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 585.

    Google Scholar 

  • Brown, G.L. and Roshko, A. (1974) On Density Effects and Large Structures in Turbulent Mixing Layers, J. Fluid Mech., 64, 775.

    Article  ADS  Google Scholar 

  • Bruno, A.D. (1990) Restricted Three-Body Problem, Nauka, Moscow (in Russian).

    Google Scholar 

  • Bryden, G., Chen, X., Lin, D., et al. (1999) Tidally Induced Gap Formation in Protostellar Disks: Gap Clearing and Suppression of Protoplanetary Growth, Astrophys. J., 514, 344.

    Article  ADS  Google Scholar 

  • Buratti, B.J. (1999) Outer Planet Icy Satellites in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 435.

    Google Scholar 

  • Burns, J.A. and Matthews M.S. (1986) Satellites, University of Arizona Press. Tucson.

    Google Scholar 

  • Busse, F.H. (1976) A Simple Model of Convection in the Jovian Atmosphere, Icarus, 29, 255.

    Article  ADS  Google Scholar 

  • Bylov, B.F, Vinograd, R.I., Grobman, D.M., and Nemytskii, V.V. (1966) The Theory of Lyapunov Exponents and Its Applications to the Questions of Stability, Nauka, Moscow (in Russian).

    Google Scholar 

  • Cameron A.G.W., Ward W., (1976) The Origin of the Moon, Sci. Proc. Lunar. Conf., 7th. Houston, p. 120

    Google Scholar 

  • Cantwell B.J. (1981) Organized Motions in Turbulent Flow, Ann. Rev. Fluid Mech., 13, 457.

    Article  ADS  Google Scholar 

  • Canup, R.M. and Asphaug, E. (2001) Origin of the Moon in a Giant Impact near the End of the Earth's Formation, Nature, 412, 708.

    Article  ADS  Google Scholar 

  • Carr, M.H. (1981) The Surface of Mars, Yale University Press, New Heaven and London.

    Google Scholar 

  • Carr, M.H. (1990) D/H on Mars: Effects of Floods Volcanism Impacts and Polar Processes, Icarus, 87, 210.

    Article  ADS  Google Scholar 

  • Carr, M.H. (1996) Water on Mars, Oxford University Press, Oxford.

    Google Scholar 

  • Carr, M.H. (1999a) Mars: Surface and Interior in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 291.

    Google Scholar 

  • Carr, M.H. (1999b) Retention of an Atmosphere on Early Mars, J. Geophys. Res., 104, 21897.

    Article  ADS  Google Scholar 

  • Carr, M.H. (2000) Martian Oceans, Valleys and Climate, Astron. Geophys., 41, 3.20.

    Article  Google Scholar 

  • Carr, M.H., Belton, M.J.S., Chapman, C.R., et al. (1998) Evidence for a Subsur-face Ocean on Europa, Nature, 39, 363.

    Article  ADS  Google Scholar 

  • Cassen, P.M., and Summers, A. (1983 ) Models of the formation of the solar nebula. Icarus v. 53, No. 1, pp. 26-40.

    Article  ADS  Google Scholar 

  • Cassen, P.M. and Woolum D.S. (1999) The Origin of the Solar System. In: Encyclopedia of the Solar System (Eds. P.R. Weissman, L.-A. McFadden, and T.V. Johnson) Academic Press, San Diego, 35.

    Google Scholar 

  • Chamberlain, J.W. and Hunten, D.M. (1987) Theory of Planetary Atmospheres. An introduction to Their Physics and Chemistry, 2nd Edition, Academic Press, San Diego.

    Google Scholar 

  • Chapman, D.R. (1980) Computational Aerodynamics and Prospects for its Development: Dryden Lecture, Raketn. Tekhn. Kosmonavt., 18, 3.

    Google Scholar 

  • Charney, J.G. and Stern, M.E. (1962) On the Stability of Internal Baroclinic Jets in a Rotating Atmosphere, J. Atmos. Sci., 19, 159.

    Article  ADS  Google Scholar 

  • Chiang, E.I. (2004) Conf. Proceed. “Dust in Protoplanetary Disks”, 26-30 May 2003. Estes Park Colorado. (Eds. Witt A.N., Clayton G.C., Draine B.T.). Astrophysics of Dust, ASP Conference Series V. 309, 2004, p. 213.

    Google Scholar 

  • Chiang, E.I. and Lithwick, Y. (2005) Neptune Trojans as a Test Bed for Planet Formation, Astrophys. J., 628, 520.

    Article  ADS  Google Scholar 

  • Chiosi, C., Bertelli, G., and Bressan, A. (1992) New Development in Understanding the HR Diagram, Ann. Rev. Astron. Astrophys., 30, 235.

    Article  ADS  Google Scholar 

  • Christensen, P.R., Bandfield, J.L., Clark, R.N., et al. (2000) Detection of Crystal-line Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-Surface Water, J. Geophys. Res., 105, 9623.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Owen, T.C., and Ip, W.-H. (1994) Impact Delivery of Volatiles and Organic Molecules to Earth in Hazards due to Comets and Asteroids, Ed. by Т Gehrels, M.S. Matthews, and A. Schumann, University of Arizona Press, Tucson, 99.

    Google Scholar 

  • Clifford, S.M. and Parker, T.J. (2001) The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains, Icarus, 154, 40.

    Article  ADS  Google Scholar 

  • Colaprete, A., and 16 co-authors (2010)Detection of water in the LCROSS ejecta plum. Science v.330, pp. 463-468.

    Google Scholar 

  • Contopoulos, G. (2002) Order and Chaos in Dynamical Astronomy, Springer, Berlin.

    MATH  Google Scholar 

  • Cosmochemistry of the Moon and Planets, Ed. by A.P. Vinogradov, Nauka, Moscow (in Russian).

    Google Scholar 

  • Coustenis, A. and Lorenz, R. (1999) Titan. In: Encyclopedia of the Solar System (Eds. P.R. Weissman, L.-A. McFadden, and T.V. Johnson) Academic Press, San Diego, 377.

    Google Scholar 

  • Crisp, D. and Titov, D. (1997) The thermal Balance of the Venus Atmosphere in Venus II, Ed. by S.W. Bougher, D.M. Hunten, and R.J. Phillips, University of Arizona Press, Tucson, 353.

    Google Scholar 

  • Crow, S.C. and Champagne, F.H. (1971) Orderly Structures in Jet Turbulence, J. Fluid Mech., 48, 547.

    Article  ADS  Google Scholar 

  • Cruikshank, D. P. and 78 collaborating authors (1995) Neptune and Triton, University of Arizona Press, Tucson.

    Google Scholar 

  • Cruikshank, D.P., Barucci, M.A., Emery, J.P., et al. (2007) Physical Properties of Trans-Neptunian Objects in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Cuzzi, J.N. (2004) Blowing in the Wind: III. Accretion of Dust Rims by Chondrule-Sized Particles in a Turbulent Protoplanetary Nebula, Icarus, 168, 484.

    Google Scholar 

  • Cuzzi, J.N. and Weidenschilling, S.J. (2006) Particle-Gas Dynamics and Primary Accretion in Meteorites and the Early Solar System II, Ed. by D. Lauretta, L. A. Leshin, and H. McSween, University of Arizona Press, Tuscon, 353.

    Google Scholar 

  • Cuzzi, J.N., Ciesla, F.J., Petaev, M.I., et al. (2005) Nebula Evolution of Thermally Processed Solids: Reconciling Models and Meteorites Chondrites and the Protoplanetary Disk, ASP Conference Series, Vol. 341, Proceedings of a workshop held 8-11 November 2004 in Kauai, Hawaii, Ed. by A.N. Krot, E.R.D. Scott, and B. Reipurth, Astronomical Society of the Pacific, San Francisco, 732.

    Google Scholar 

  • Cuzzi, J.N., Davis, S.S., and Dobrovolskis, A.R. (2003) Blowing in the Wind. II. Creation and Redistribution of Refractory Inclusions in a Turbulent Protoplanetary Nebula, Icarus, 166, 385.

    Google Scholar 

  • Dalal, N. and Kochanek, C.S. (2002) Direct Detection of Cold Dark Matter Substructure, Astrophys. J., 572, 25.

    Article  ADS  Google Scholar 

  • Del Genio, A.D. (1997) Atmospheres in Encyclopedia of Planetary Sciences, Ed. by J.H. Shirley and R.H. Fairbridge, Chapman and Hall, London.

    Google Scholar 

  • Delsemme, A.H. (1999) The deuterium enrichment observed in recent comet is consistent with the cometary origin of sea water. Planet. Space Sci. v.47, pp. 125-131.

    Article  ADS  Google Scholar 

  • Diagu, F. and Holmes, P. (1997) Celestial Encounters: The Origins of Chaos and Stability, Princeton University Press, Princeton.

    Google Scholar 

  • Dominik, C., Blum, J., Cuzzi, J., and Wurm, G. (2007) Growth of Dust as the Initial Step toward Planet Formation in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Donahue, T.M., Grinspoon, D.H., Hartle, R.E., and Hodges, R.R. (1997) Ion/Neutral Escape of Hydrogen and Deuterium: Evolution of Water in Venus II, Ed. by S.W. Bougher, D.M. Hunten, and R.J. Phillips, University of Arizona Press, Tucson, 385.

    Google Scholar 

  • Donahue, T.M., Hoffman, J.H., Hodges, R.R., and Watson, A.J. (1982) Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen, Science, 216, 630.

    Article  ADS  Google Scholar 

  • Dorofeeva, V.A. and Makalkin, A.B.. (2004), Evolution of the Early Solar System. Cosmochemical and Physical Aspects, Editorial URSS, Moscow (in Russian).

    Google Scholar 

  • Doroshkevich, A.G., Zel'dovich, Ya.B., and Sunyaev, R.A. (1976) Adiabatic Theory of Galaxy Formation in Origin and Evolution of Galaxies and Stars, Ed. by S.B. Pikelner, Nauka, Moscow, 65 (in Russian).

    Google Scholar 

  • Dubrulle, B. (1993) Differential Rotation as a Source of Angular Momentum Transfer in the Solar Nebula, Icarus, 106, 59.

    Article  ADS  Google Scholar 

  • Dullemond, C.P. and Dominik, C. (2005) Dust Coagulation in Protoplanetary Disks: A Rapid Depletion of Small Grains, Astron. Astrophys., 434, 971.

    Article  ADS  MATH  Google Scholar 

  • Dullemond, C.P., Hollenbach, D., Kamp, I., and D'Alessio, P. (2007) Models of the Structure and Evolution of Protoplanetary Discs in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Duncan, M. and Levison, H. (1997) A Scattered Comet Disk and the Origin of Jupiter Family Comet, Science, 276, 1670.

    Article  ADS  Google Scholar 

  • Duncan, M.J. and Lissauer, J.J. (1999) Solar System Dynamics in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 809.

    Google Scholar 

  • Durisen, R.H., Boss, A.P., Mayer, L., et al. (2007) Gravitational Instabilities in Gaseous Protoplanetary Disks and Implications for Giant Planet Formation in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Dutrey, А., Guilloteau, S., and Ho, P. (2007) Interferometric Spectro-Imaging of Molecular gas in Protoplanetary Discs in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Dyson and Freeman, A.M. (1989) Terraforming Venus, Correspondence in J. British Interplanetary Society, 42, 593.

    Google Scholar 

  • Eardley, D.M., Lightman, A.P., Payne, D.G., and Shapiro S.L. (1978) Accretion Discs around Massive Black Holes: Persistent Emission Spectra, Astrophys. J., 234, 53.

    Article  ADS  Google Scholar 

  • Ebeling, W. and Feistel, R. (2005) Chaos and Cosmos. Evolution Synergetics, "Regular and Chaotic Dynamics" Research Center, Institute of Computer Research, Мoscow-Izhevsk (in Russian).

    Google Scholar 

  • Eidelman, S. et al. (Particle Data Group) (2004) Phys. Lett. B 592, p.1 (URL: http://pdg.lbl.gov).

  • Elgaroy, O., Lahav, O., Percival, W.J., et al. (2002) New Upper Limit on the Total Neutrino Mass from the 2 Degree Field Galaxy Redshift Survey, Phys. Rev. Lett., 89, p. 61.

    Google Scholar 

  • Elliot, J.L. and Nicholson, P.D. (1984) The Rings of Uranus in Planetary Rings, Ed. by R. Greenberg and A. Brahic, University of Arizona Press. Tucson, 25.

    Google Scholar 

  • EAA. Encyclopedia of Astronomy and Astrophysics (2001), Nature Publishing Group and Institute of Physics Publishing, Dirac House, Temple Back, Bristol.

    Google Scholar 

  • Eneev, T.M. (1981) On the Possible Structure of the Outer (Trans-Neptunian) Regions of the Solar System, Pis'ma Astron. Zh., 6, 295.

    ADS  Google Scholar 

  • Eneev, T.M. and Kozlov, N.N. (1981) A Model for the Accumulation Formation of Planetary Systems. I. Numerical Experiments, Astron. Vestn., 15, 80.

    Google Scholar 

  • Esposito, L., Brahic, A., Burns, J.A., and Marouf, E.A. (1991) Particle Properties and Processes in Uranus’ Rings in Uranus, Ed. by J.T. Bergstrahl, E.D. Miner, and M.S. Matthews, University of Arizona Press, Tucson, 410.

    Google Scholar 

  • Esposito, L., Cuzzi, J.N., Holdberg, J.B., et al. (1984) Saturn’s Rings: Structure, Dynamics and Particle Properties in Saturn, Ed. by T. Gehrels and M.S. Matthews, University of Arizona Press, Tucson, 463.

    Google Scholar 

  • Esposito, L.W., Knollenberg, R.G., Marov, M.Ya., et al. (1983) The Clouds and Hazes of Venus. In: Venus (Eds. D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz) University of Arizona Press, Tucson, 484-564.

    Google Scholar 

  • Fanale, F.P. (1999) Mars: Atmosphere and Volatile History. In: Encyclopedia of the Solar System (Eds. P.R. Weissman, L.-A. McFadden, and T.V. Johnson) Academic Press, San Diego, 277.

    Google Scholar 

  • Feigenbaum, M.J. (1978) Universal Behavior in Nonlinear System, Physica, 7D, 16.

    MathSciNet  ADS  Google Scholar 

  • Fernandez, J.A. (1994) Dynamics of Comets: Recent Developments and New Challenges in Asteroids, Comets, Meteors 1993, Ed. by A. Milani, M.D. Martino, and A. Cellino, Kluwer, Dordrecht, 223.

    Google Scholar 

  • Fernandez, J.A. (1999) Cometary Dynamics in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 537.

    Google Scholar 

  • Ferraz-Mello, S. (1979) Dynamics of the Galilean Satellites of Jupiter, IAG-USP, Sao Paulo, Brazil.

    Google Scholar 

  • Fixsen, D.J. and Mather, J.C. (2002) The Spectral Results of the Far-Infrared Absolute Spectrophotometer Instrument on COBE, Astrophys. J., 581, 817.

    Article  ADS  Google Scholar 

  • Fowler, R.H. (1926) On Dense Matter, Mon. Not. R. Astron. Soc., 87, 114.

    ADS  Google Scholar 

  • French, R., Nicholson, P.D., Porco, C.C., and Marouf, E.A. (1991) Dynamics and Structure of the Uranian Rings in Uranus, Ed. by J.T. Bergstrahl, E.D. Miner, and M.S. Matthews, University of Arizona Press, Tucson, 327.

    Google Scholar 

  • Fridman, A.M. and Polyachenko, V.L. (1984) Physics of Gravitating System, Springer, New York.

    Book  Google Scholar 

  • Fridman, A.M., Sagdeev, R.Z., Horuzhyi, O.V., and Polyachenko, E.V. (2003) Observed Manifestations of Chaos in Spiral Galaxies in Modern Problems of Mechanics and Space Physics, Fizmat., Moscow, 12 (in Russian).

    Google Scholar 

  • Fridman, F.M. (1989) To the Dynamics of a Viscous Differentially Rotating Gravitating Medium, Pis'ma Astron. Zh.,15, 1122.

    Google Scholar 

  • Gaidos, E. and Selsis, F. (2007) From Protoplanets to Protolife: The Emergence and Maintenance of Life in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Galileo Рrobe Team (1996) Galileo at Jupiter: Results from the Probe, Science, 272, 837.

    Article  Google Scholar 

  • Galileo Probe Team (1998) J. Geophys. Res., Planet, 103, E9, Special Issue.

    Google Scholar 

  • Galileo Orbiter Team 1998a) J. Geophys. Res. 103, E10, Special Issue.

    Google Scholar 

  • Galileo Orbiter Team (1998b) Icarus 135, Special Issue.

    Google Scholar 

  • Galimov, E.M. (2001) The Phenomenon of Life. Between Equilibrium and Nonlinearity. The Origin and Principles of Evolution. URSS, Moscow (in Russian).

    Google Scholar 

  • Galimov, E.M. (2004) On the Origin of the Moon's Material. Geokhimiya, 4, 691.

    Google Scholar 

  • Galimov, E.M. (2005) Prerequisites and Conditions for the Emergence of Life. Research Problems, Geokhimiya, 5, 1.

    Google Scholar 

  • Galimov, E.M. (2006) The Moon – Helium-3 Project, Nauka, Moscow (in Russian).

    Google Scholar 

  • Galimov, E.M. (2008) Concept of stable ordering and ATP-dependent mechanism of life origin. In: "Problems of the biosphere origin and evolution" (E.M. Galimov ed.), М.: URSS. pp. 23-32.

    Google Scholar 

  • Galimov, E.M., Krivtsov, A.M., Zabrodin, A.V., et al. (2005) Dynamical Model for the formation of the Earth-Moon System, Geokhimiya, 11, 1139.

    Google Scholar 

  • Galimov, E.M. (2010) The Moon and Earth formation from the common supra-planetary gas-dust cluster. Paper presented at the XIX Russian Symposium on isotopes geochemistry, Nov. 16, Moscow (in Russian).

    Google Scholar 

  • Gallagher, J.S., Hunter, D.A., and Tutukov A.V. (1984) Star Formation Histories of Irregular Galaxies, Astrophys. J., 284, 544.

    Article  ADS  Google Scholar 

  • Gawiser, E. and Silk, J. (1998) Extracting Primordial Density Fluctuations, Science, 280, 1405.

    Article  ADS  Google Scholar 

  • Gillett, S.L. (1991) Establishment and Stabilization of Earthlike Conditions on Venus, J. British Interplanet. Soc., 44, 151.

    ADS  Google Scholar 

  • Girardi, M., Borgani, S., Giuricin, G., et al. (2000) Optical Luminosities and Mass-to-Light Ratios of Nearby Galaxy Clusters, Astrophys. J., 530, 62.

    Article  ADS  Google Scholar 

  • Glatzmaier, G.A., Evonuk, M., and Rogers, T.M. (2009) Differential rotation in giant planets maintained by density-stratified turbulent convection. Geoph. and Astrophys. Fluid Dynamics v. 103, No. 1, pp. 31–51.

    Article  MathSciNet  ADS  Google Scholar 

  • Gladstone,G.R., and 19 co-authors (2010) LRO-LAMP observations of the LCROSS impact plume. Science v.330, pp. 472-476.

    Google Scholar 

  • Glansdorff, P. and Prigogine, I. (1973) Thermodynamic Theory of Structure, Stability and Fluctuation, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Gledzer, E.B., Dolzhanskii, F.V., and Obukhov, A.M. (1981) Hydrodynamic Systems and Their Applications, Nauka, Moscow (in Russian).

    Google Scholar 

  • Goldrich, P. and Ward, W.R. (1973) The formation of Planetesimals, Astrophys. J., 183, 1051.

    Article  ADS  Google Scholar 

  • Golitsyn, G.S. (1973) Introduction to the Dynamics of Planetary Atmospheres, Gidrometeoizdat, Leningrad (in Russian).

    Google Scholar 

  • Golombek, M. P. and Bridges, N.T. (2000) Erosion Rates on Mars and Implications for Climate Change: Constraints from the Pathfinder Landing Site, J. Geophys. Res., 105, 1841.

    Article  ADS  Google Scholar 

  • Gor'kavyi, N.N. and Fridman, A.M. (1994) Physics of Planetary Rings, Nauka, Moscow (in Russian).

    Google Scholar 

  • Gounelle, M., Shu, F.H., Shang, H., et al. (2006) The Irradiation Origin of Beryllium Radioisotopes and Other Short-Lived Radionuclides, Astrophys. J., 640, 1163.

    Article  ADS  Google Scholar 

  • Green, B. (1999) The Elegant Universe. Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Vintage Books, New York.

    Google Scholar 

  • Green, B. (2004 ) Tha Fabric of the Cosmos. Space, Time, and the Texture of Reality. Alfred A. Knopf, NY.

    Google Scholar 

  • Greenberg, R. and Brahic, A. (1984) Planetary Rings, University of Arizona Press, Tucson.

    Google Scholar 

  • Grinspoon, D.H., Pollack, J.B., Sitton, B.R., et al. (1993) Probing Venus’s Cloud Structure with Galileo NIMS, Planet. Space Sci., 41, 515.

    ADS  Google Scholar 

  • Gulick, V.C. (2001) Origin of the Valley Networks on Mars: a Hydrological Perspective, Geomorphology, 37, 241.

    Article  ADS  Google Scholar 

  • Haken, H. (1983) Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices, Springer, Berlin.

    MATH  Google Scholar 

  • Haken, H. (1988) Information and Self-Organization. A Macroscopic Approach to Complex Systems, Springer, Berlin.

    MATH  Google Scholar 

  • Hansen, C.J., and Kawaler, S.D. (1994) Stellar Interiors. Physical Principles, Structure, and Evolution, Springer, Berlin.

    Google Scholar 

  • Hartmann, W.K. (2003) A Traveller’s Guide to Mars. The Mysterious Landscapes of the Red Planet, Workman Publ., New York.

    Google Scholar 

  • Hartmann, W.K., and Davies, D.R. (1975) Satellite-sized planetesimals and lunar origin. Icarus. V. 24. P. 504-515.

    Article  ADS  Google Scholar 

  • Hartmann, W.K., and Berman, D.C. (2000) Elysium Planitia Lava Flows: Crater Count Chronology and Geological Implications, J. Geophys. Res., 105, 15011.

    Article  ADS  Google Scholar 

  • Hartmann, W.K, and Neukum, G. (2001) Cratering Chronology and the Evolution of Mars, Space Sci. Rev., 96, 165.

    Article  ADS  Google Scholar 

  • Hawley, J.F. and Balbus, S.A. (1991) A Powerful Local Shear Instability in Weakly Magnetized Disk. II Nonlinear Evolution, Astrophys. J., 376, 223.

    Google Scholar 

  • Hayne,P.O., and 5 co-authors (2010) Diviner lunar radiometer observations of the LCROSS impact. Science v. 330, pp. 477-479.

    Google Scholar 

  • Head, J.W. and Basilevsky, A.T. (1999) Venus: Surface and Interior in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 161.

    Google Scholar 

  • Head, J.W., III, Hiesinger, H., Ivanov, M.A., et al. (1999) Possible Ancient Oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data, Science, 286, 2134.

    Article  ADS  Google Scholar 

  • Hildebrand, R. (1983) The Determination of Cloud Masses and Dust Characteristics from Submillimeter Thermal Emission, Astron. Soc., 24, 267.

    ADS  Google Scholar 

  • Holtzman, J. (1989) Microwave Background Anisotropies and Large-Scale Structure in Universes with Cold Dark Matter, Baryons, Radiation, and Massive and Massless Neutrinos, Astrophys. J. Suppl. Ser., 71, 1.

    Article  ADS  Google Scholar 

  • Holtzman, J. and Primack, J.R. (1993) Cluster Correlations for Cold and Hot Dark Matter and Other Models, Astrophys. J., 405, 428.

    Article  ADS  Google Scholar 

  • Horsthemke, W. and Lefever, R. (1984) Noise Induced Transitions, Springer, Berlin-Heidelberg-New York-Tokyo.

    MATH  Google Scholar 

  • Hunten, D.M. (1999) Venus: Atmosphere in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 147.

    Google Scholar 

  • Hunten, D.M., Tomasko, M.G., Flasar, F.M.,et al. (1984) Titan in Saturn, Ed. by T. Gehrels and M.S. Matthews, University of Arizona Press, Tucson, 671.

    Google Scholar 

  • Ingersoll, A, Beebe, R., Conrath, B., and Hunt, G. (1984) Structure and Dynamics of Saturn's Atmosphere in Saturn, Ed. by T. Gehrels and M.S. Matthews, University of Arizona Press, Rucson, 195.

    Google Scholar 

  • Ingersoll, A.P. and Pollard, D. (1982) Motion in the Interiors and Atmospheres of Jupiter and Saturn: Scale Analysis, Inelastic Equations, Barotropic Stability Criterion, Icarus, 52, 62.

    Google Scholar 

  • Ingersoll, A.P., Barnet, C.D., Beebe, R.F., et al. (1995) Dynamic Meteorology of Neptune in Neptune and Triton, Ed. by D. Cruikshank, University of Arizona Press. Tucson, p. 613.

    Google Scholar 

  • Ingersoll, A.P., Vasalada, A.R., and Galileo Imaging Team (1998) Dynamics of Jupiter's Atmosphere in SPSI: The Galileo Mission to the Jupiter System. In: Highlights of Astronomy, v. 11B (ed. J. Andersen), Kluwer Academic Publishers, p. 1046.

    Google Scholar 

  • Ipatov, S.I. (2000) Migration of Celestial Bodies in the Solar System, Editorial URSS, Moscow (in Russian).

    Google Scholar 

  • Ipatov, S.I., Mather, J.C., and Marov, M.Ya. (2006a) Migration of Icy Bodies to the Terrestrial Planets, Joint Assembly AGU, GS, MAS, MSA, SEG, and UGM, 23-26 May, Baltimore, Maryland, USA, Eos Trans. AGU, 87(36).

    Google Scholar 

  • Ipatov, S.I., Marov, M.Ya., and Mather, J.C. (2006b) Delivery of Volatiles to the Terrestrial Planets, Astrobiology, 6, 241.

    Google Scholar 

  • Ivanov, B.A. (2003) Comparison of the Sizes of Asteroids and Impact Craters in Modern Problems of Mechanics and Space Physics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Ivanov, M.A. and Head, J.W. (2001) Chryse Planitia Mars: Topographic Configuration Outflow Channel Continuity and Sequence and Tests for Hypothesized Ancient Bodies of Water Using Mars Orbiter Laser Altimeter (MOLA) Data, J. Geophys. Res., 106, 3275.

    Article  ADS  Google Scholar 

  • Izakov, M.N., and Marov, M.Ya. (1989) The Upper Atmosphere. In: The Planet Venus (Eds. V.L. Barsukov and V.P. Volkov) Nauka, Moscow, pp. 114-132 (in Russian).

    Google Scholar 

  • Jakosky, B.M. and Jones, J.H. (1997) The History of Martian Volatiles, Rev. Geophys., 35, 1.

    Article  ADS  Google Scholar 

  • Jenkins, J.M., Kolodne, B.J., Butler, B.J., et al. (2002) Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of Venus, Icarus, 158, 312.

    Article  ADS  Google Scholar 

  • Jewitt, D. (1999) Kuiper Belt Objects, Ann. Rev. Earth Planet. Sci., 27, 287.

    Article  ADS  Google Scholar 

  • Jewitt, D., Chizmadia, L., Grimm, R., and Prialnik, D. (2007) Water in the Small Bodies of the Solar System in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Jewitt, D., Luu, J., and Trujillo, C. (1998) Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey, Astron. J., 115, 2125.

    Article  ADS  Google Scholar 

  • Johnson, T.V. and Soderblom, L.A. (1983) Io, Sci. Am., 249, 56.

    Google Scholar 

  • Kadomtsev, B.B. and Ryazanov, A.I. (1983) What is Synergetics?, Priroda, 8, 2.

    Google Scholar 

  • Kahn, R. (1984) The Spatial and Seasonal Distribution of Martian Clouds and Some Meteorological Implications, J. Geophys. Res., 89, 6671.

    Article  ADS  Google Scholar 

  • Kampe де Feriet, J. (1959) Statistical Mechanics and Theoretical Models of Diffusion Processes in Atmospheric Diffusion and Air Pollution, Ed. by F.N. Frenkiel and P.A. Sheppard, Academic Press, New York and London, 134.

    Google Scholar 

  • Kaplan, J. and Yorke J.A. (1978) Springer Lecture Notes in Mathematics, no. 730, 228.

    Google Scholar 

  • Kasting, J.F., Toon, O.B., and Pollack, J.B. (1988) How Climate Evolved on the Terrestrial Planets, Sci. Am., 256, 90.

    Article  ADS  Google Scholar 

  • Keizer, J. (1987) Statistical Thermodynamics of Nonequilibrium Processes, Springer, New York.

    Book  Google Scholar 

  • Kemper, F., Vriend, W.J., and Tielens, A.G.G.M. (2004) The Absence of Crystalline Silicates in the Diffuse Interstellar Medium, Astrophys. J., 609, 826.

    Article  ADS  Google Scholar 

  • Kerzhanovich, V.V. and Marov, M.Ya. (1983) The Atmospheric Dynamics of Venus According to Doppler Measurements by the Venera Entry Probes in Venus, Ed. By D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz, University of Arizona Press, Tucson, 766.

    Google Scholar 

  • Keszthelyi, L. and McEwen, A. (1997) Magmatic Differentiation of Io, Icarus, 130, 437.

    Article  ADS  Google Scholar 

  • Khlopkov, Yu.I., Zharov, V.A., and Gorelov, S.L. (2002) Coherent Structures in a Turbulent Boundary Layer, Moscow Physicotechnical Institute, Moscow (in Russian).

    Google Scholar 

  • Khurana, K.K., Kivelson, M.G., Stevenson, D.J., et al. (1998) Induced Magnetic Fields as Evidence for Subsurface Oceans in Europa and Callisto, Nature, 395, 777.

    Article  ADS  Google Scholar 

  • Kieffer, H.H., Jakosky, B.M., Snyder, C.W., and Matthews M. S. (1992) Mars, University of Arizona Press, Tucson.

    Google Scholar 

  • Kippenhahn, R. and Weigert, A. (1990) Stellar Structure and Evolution, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Kita, N.T., Huss, G.R., Tachibana, S., et al. (2005) Constraints on the Origin of Chondrules and CAIs from Short-Lived and Long-Lived Radionuclides in Chondrites and the Protoplanetary Disk, Ed. By A.N. Krot, E.R.D. Scott, and B. Reipurth, ASP Conference Series, San Francisco, 558.

    Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Russell, C.T., et al. (1996) Discovery of Ganymede’s Magnetic Field by the Galileo Spacecraft, Nature, 384, 537.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Stevenson, D.J., et al. (1999) Europa and Callisto: Induced or Intrinsic Fields in a Periodically Varying Plasma Environment, J. Geophys. Res., 104, 4609.

    Article  ADS  Google Scholar 

  • Klein, T., Touboul, M., Burkhardt, C., and Bourdon, B. (2008a) Dating the first ~100 Ma of the solar system: From the formation of CAIs to the origin of the Moon. Goldschmidt Conference Abstracts, July 13-18, Vancouver, Canada, A480.

    Google Scholar 

  • Klein, T., Touboul, M., Van Orman, J.A., Bourdon, B., Maden, C., Mezger, K., and Halliday, A.N. (2008b) Hf-W thermocronometry: Closure temperature and constraints on the accretion and cooling history of H chondrites parent body. Earth Planet. Sci. Letters, v. 270, pp. 106-118.

    Article  ADS  Google Scholar 

  • Klein, T., Touboul, M., Bourdon, B., C., Nimmo, F., Mezger, K.,Palme, N., Jacobsen, S., Yin, Q.-Z., and Halliday, A.N. (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta, v. 73, pp. 5150-5188.

    Google Scholar 

  • Klimontovich, Yu.L. (1990) Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems, Nauka, Moscow (in Russian).

    Google Scholar 

  • Klimontovich, Yu.L. (2002) Introduction to the Physics of Open Systems, Janus-K, Moscow (in Russian).

    Google Scholar 

  • Kliore, A.J. and Patel, R. (1980) The Vertical Structure of the Atmosphere of Venus from Pioneer Venus Orbiter Radio Occultation, J. Geophys. Res., 85, 7957.

    Article  ADS  Google Scholar 

  • Klypin, A., Holtzman, J., Primack, J.R., and Regos, E. (1993) Structure Formation with Cold Plus Hot Dark Matter, Astrophys. J., 416, 1.

    Article  ADS  Google Scholar 

  • Kolb, E.W. and Turner, M.S. (1990) The Early Universe, Addison-Wesley, New York.

    MATH  Google Scholar 

  • Kolesnichenko, A.V. and Marov, M.Ya (1999) Turbulence of Multicomponent Media, MAIK-Nauka, Moscow (in Russian).

    Google Scholar 

  • Kolmogorov, A.N. (1941) Local Structure of Turbulence in an Incompressible Fluid at Very Large Reynolds Numbers, Dokl. Akad. Nauk USSR, 30, 299.

    ADS  Google Scholar 

  • Kolmogorov, А.N. (1954) On the Conservation of Conditionally Periodic Motions at a Small Change of the Hamiltonian, Dokl. Akad. Nauk USSR, 98, 572.

    MathSciNet  Google Scholar 

  • Kolmogorov, A.N. (1959) On the Entropy per Unit Time as a Metric Invariant of Automorphisms, Dokl. Akad. Nauk USSR, 124, 754.

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A.N. (1962) Refining the Views about the Local Structure of Turbulence in an Incompressible Viscous Fluid at Large Reynolds Numbers, Mecanique de la turbulence: Colloq. Intern. CNRS, Marseille, aout - sept. 1961, 447 (in Russian).

    Google Scholar 

  • Krestyanikova, M.A. and Shematovich, V.I. (2006) Stochastic Models of Hot Planetary and Satellite Coronas: The hot oxygen Corona of Mars, Astron. Vestn., 38, 1.

    Google Scholar 

  • Krimigis, S.M., Mitchell, D.G., Hamilton, D.C., et al. (2002) A Nebula of Gases from Io Surrounding Jupiter, Nature, 415, 994.

    Article  ADS  Google Scholar 

  • Krylov, N.S. (1950) Works on the Substantiation of Statistical Physics, Akad. Nauk USSR, Moscow-Leningrad (in Russian).

    Google Scholar 

  • Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B.. (2009) Systems of Jupiter and Saturn. URSS, M. (in Russian).

    Google Scholar 

  • Kuzmin, A.D. and Marov, M.Ya. (1974) Physics of the Planet Venus, Nauka, Moscow (in Russian).

    Google Scholar 

  • Kuzmin, Р.О., Zabalueva, E.V.,Mitrofanov, I.G.,Litvak, M.L., et al. (2007). Seasonal redistribution of water in the surface layer of Martian regolith based on the neutron detector HEND on board Mars Odyssey. Solar System Res. 41, № 2, 99.

    Google Scholar 

  • Kwok, S. (2000) The Origin and Evolution of Planetary Nebulae, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lagrange, A.-M., Backman, D., and Artymowicz, P. (2000) Planetary Material around Main Sequence Stars in Protostars and Planets IV, Ed. by V. Mannings, A.P. Boss, and S.S. Russell, University of Arizona Press, Tucson, 639.

    Google Scholar 

  • Landau, L.D. and Lifshitz, V.M. (1988) Hydrodynamics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Landau, L.D. and Lifshitz, Е.М. (1944) Continuum Mechanics, Gostekhteorizdat, Moscow-Leningrad (in Russian).

    Google Scholar 

  • Laskar, J.A. (1989) Numerical Experiment on the Chaotic Behavior of the Solar System, Nature, 338, 237.

    Article  ADS  Google Scholar 

  • Laskar, J.A. (1990) The Chaotic Motion of the Solar System: A Numerical Estimate of the Size of the Chaotic Zones, Icarus, 88, 266.

    Article  ADS  Google Scholar 

  • Levison, H. and Duncan, M. (1997) From the Kuiper Belt to Jupiter Family Comets: The Spatial Distribution of Ecliptic Comets, Icarus, 127, 13.

    Article  ADS  Google Scholar 

  • Levison, H.F. and Weissman, P.R. (1999) The Kuiper Belt in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 557.

    Google Scholar 

  • Levison, H.F., Morbidelli, A., Gomes, R., and Backman, D. (2007) Planet Migration in Planetesimal Discs in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Levy, E.H. and Lunine, J.L. (1993) Books-Received - Protostars and Planets III, British Astron. Assoc. Jrn., 103, 266.

    ADS  Google Scholar 

  • Lewis, J.S. (1997) Physics and Chemistry of the Solar System, Revised Edition, Academic Press, New York.

    Google Scholar 

  • Liddle, A. and Rand, L. (1993) The Cold Dark Matter Density Perturbations, Phys. Rep., 231, 1.

    Article  ADS  Google Scholar 

  • Lieske, J.H. (1977) Theory of Motion of Jupiter's Galilean Satellites, Astron. Astrophys., 56, 333.

    ADS  MATH  Google Scholar 

  • Limaye, S.S., Grund, C.J., and Burre, S.P. (1982) Zonal Mean Circulation at the Cloud Level of Venus: Spring and Fall 1979 OCPP Observations, Icarus, 51, 416.

    Article  ADS  Google Scholar 

  • Linde, A.D. (1990) Particle Physics and Inflationary Cosmology, Harwood Academic, Chur.

    Google Scholar 

  • Linde, A.D. (1994) The self-Reproducing Inflationary Universe, Sci. Am., 271, 48.

    Article  ADS  Google Scholar 

  • Lissauer, J.J. (1993) Planet Formation, Ann. Rev. Astron. Astrophys., 31, 129.

    Article  ADS  Google Scholar 

  • Lissauer, J.J. and Stevenson, D.J. (2007) Formation of Giant Planets in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Litvak M. L., Mitrofanov I.G., Kozyrev A.S., et al. (2006) Comparison between polar regions of Mars from HEND/Odyssey data. Icarus.180. № 1. p.23.

    Google Scholar 

  • Liu, J., and Schneider, T. (2010) Mechanisms of jet formation on the giant planets. J. Atmosph. Sci. v. 67, pp. 3652 – 3672.

    Article  ADS  Google Scholar 

  • Lorenz, E.N. (1963) Deterministic Nonperiodic Flow, J. Atmos. Sci., 20, 130.

    Article  ADS  Google Scholar 

  • Loskutov, A.Yu. (2007) Dynamical Chaos. Systems of Classical Mechanics, Usp. Fiz. Nauk, 177, 989.

    Google Scholar 

  • Lucchitta, B.K. (2001) Antarctic Ice Streams and Outflow Channels on Mars, Geophys. Res. Lett., 28, 403.

    Article  ADS  Google Scholar 

  • Lucey, P. (2009). The poles of the Moon. Elements, v.5, No.1, 41-46.

    Article  Google Scholar 

  • Luhman, K.L., Joergen, V., Lad, C., et al. (2007) The formation of Brown Dwarfs: Observations in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Lunine, J. (1993) The atmospheres of Uranus and Neptune, Ann. Rev. Astron. Astrophys., 31, 217.

    Article  ADS  Google Scholar 

  • Lyne, A.G. and Graham-Smith, F. (1998) Pulsar Astronomy, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lyra, W., Johansen, A. Zsom, A., Klahr, H., and Piskunov, N. (2009) Planet formation bursts at the borders of the dead one in 2D numerical simulations of circumstellar disks. Astronomy and Astrophysics No. 1265, pp. 1-20.

    Google Scholar 

  • Makalkin A.B.. (2003) Problems of the Evolution of Protoplanetary Disks in Modern Problems of Mechanics and Space Physics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Makalkin, A.B.. (1994) Radial Compaction of the Dust Subdisk in a Protoplanetary Disk as Possible Way to Gravitational Instability, Lunar Planet. Sci., 25, 827.

    ADS  Google Scholar 

  • Malhotra, R. (1995) The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune, Astron. J., 110, 420.

    Article  ADS  Google Scholar 

  • Malin, M.C. and Edgett, K.S. (2000) Evidence for Recent Ground Water Seepage and Surface Runoff on Mars, Science, 288, 2330.

    Article  ADS  Google Scholar 

  • Malin, M.C. and Edgett, K.S. (2001) Sedimentary Rocks of Early Mars, Science, 290, 1927.

    Article  ADS  Google Scholar 

  • Mandelbrot, B.B. (1975) On the Geometry of Homogeneous turbulence, with Stress on the Fractal Dimension of the Iso-surfaces of Scalars, J. Fluid Mech., 72, 401.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mangold, N. and Allemand, P. (2001) Topographic Analysis of Features Related to Ice on Mars, Geophys. Res. Lett., 28, 407.

    Article  ADS  Google Scholar 

  • Marchal, C. (1990) The Three-Body Problem, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • Marcy, G., Cochran, W., and Mayor, M. (2000) Extrasolar Planets around Main Sequence stars in Protostars and Planets IV, Ed. by V. Mannings, A. Boss, and S. Russell, University of Arizona Press, Arizona, 1285.

    Google Scholar 

  • Marov, M.Ya. (1971) A Model of the Venusian Atmosphere, Dokl. Akad. Nauk USSR, 196, 67.

    ADS  Google Scholar 

  • Marov, M.Ya. (1972) Venus: A Perspective at the Beginning of Planetary Exploration, Icarus, 16, 415.

    Article  ADS  Google Scholar 

  • Marov, M.Ya. (1978) Results of Venus Missions, Ann. Rev. Astron. Astrophys., 16, 141.

    Article  ADS  Google Scholar 

  • Marov, M.Ya. (1986) Planets of the Solar System, Nauka, Moscow (in Russian).

    Google Scholar 

  • Marov, M.Ya. (1994) Physical Properties and Models of Comets. Solar System Res, 28, 5.

    Google Scholar 

  • Marov, M.Ya. (1994) Mars, Atmosphere. In: The Astronomy and Astrophysics Encyclopedia (Ed. S.P.Maran), Van Norstrand Reinhold and Cambridge Univ. Press, 407-411

    Google Scholar 

  • Marov, M.Ya. (2005) Small bodies and Problems of Cosmogony, Usp. Fiz. Nauk, 175, 668.

    Article  Google Scholar 

  • Marov, M.Ya., and Shari, V.P. (1973) Long-Wavelength Radiation Transfer in the Lower Atmosphere of Venus, Preprint no. 23, Keldysh Institute of Applied Mathematics, Academy of Sciences of USSR, Moscow (in Russian).

    Google Scholar 

  • Marov, M.Ya., Avduevsky, V.S., Borodin, N.F., et al. (1973) Preliminary Results on the Venus Atmosphere from the Venera 8 Descent Module, Icarus, 20, 407.

    Article  ADS  Google Scholar 

  • Marov, M.Ya, Byvshev, B.V., Baranov, Yu.P., et al. (1976) Nephelometric Measurements on Venera-9 and Venera-10. Kosmich. Issled., 14, 729.

    ADS  Google Scholar 

  • Marov, M.Ya., Lystsev, V.E., Lebedev, V.N., et al. (1980) The structure and Microphysical Properties of the Venus Clouds: Venera 9, 10, and 11 Data, Icarus, 44, 608.

    Article  ADS  Google Scholar 

  • Marov, M.Ya., Galtsev, A.P., and Shari, V.P. (1984) Н2О Profile in the Lower Atmosphere of Venus from Effective Flux Measurements, Kosmich. Issled., 22, 267.

    ADS  Google Scholar 

  • Marov, M.Ya. and Kolesnichenko, A.V. (1987) Introduction to Planetary Aeronomy, Nauka, Moscow (in Russian).

    Google Scholar 

  • Marov, M.Ya, Galtsev, A.P., and Shari V.P. (1985) Thermal Radiation Transfer and Water Content in the Venusian Atmosphere, Solar System Res. 19, 15.

    Google Scholar 

  • Marov, M.Ya, Volkov, V.P., Surkov, Yu.A., and Rivkin, M.L. (1989a) The Lower Atmosphere. In: The Planet Venus (Eds V.L. Barsukov and V.P. Volkov) pp. 25-68, Nauka, Moscow (in Russian).

    Google Scholar 

  • Marov, M.Ya, Galtsev, A.P., and Shari, V.P. (1989b) Thermal Regime of the Venusian Atmosphere. In: The Planet Venus (Eds. V.L. Barsukov and V.P. Volkov) Nauka, Moscow, pp. 94-132 (in Russian).

    Google Scholar 

  • Marov, M.Ya., Galtsev, A.P., and Shari V.P. (1989c) Estimation of the Influence of Sulfur Dioxide on Heat Transfer in the Venus Atmosphere, Proceedings of the 19th Lunar and Planetary Sci. Conf., 349.

    Google Scholar 

  • Marov, M.Ya., Shematovich, V.I., Bisikalo, D.V., and Gerard, J.-C. (1996) Non-Equilibrium Kinetics in the Aeronomy Problems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 274, 377.

    Google Scholar 

  • Marov M.Ya. and Grinspoon, D.H. (1998) The Planet Venus, Yale University Press, New Heaven & London.

    Google Scholar 

  • Marov, M.Ya., and Rahe, J. (1998) The Jupiter system In: Highlights of Astronomy, v. 11B (ed. J. Andersen), Kluwer Academic Publishers, p. 1041.

    Google Scholar 

  • Marov, M.Ya. and Kolesnichenko, A.V. (2001) Mechanics of Turbulence of Multicomponent Gases. Kluwer Academic Publishers, Dordrecht-Boston-London.

    MATH  Google Scholar 

  • Marov, M.Ya. and Ipatov, S.I. (2001) Volatile Inventory and Early Evolution of the Planetary Atmospheres. In: Collisional Processes in the Solar System (Eds. M.Ya. Marov and H. Rickman) Kluwer Acad. Publ., Dordrecht-Boston-London, 223.

    Google Scholar 

  • Marov, M.Ya. and Ipatov, S.I. (2005) Migration of dust particles and volatiles delivery to the inner planets, Abstracts of 35th Lunar and Planetary Science Conference, March 14-18, League City, TX, USA, 1268.

    Google Scholar 

  • Marov, M.Ya. and Ipatov, S.I. (2006a) Migration of Dust Particles and Volatiles Delivery to the Terrestrial Planets, Astron. Vestn., 40, 5.

    Google Scholar 

  • Marov, M.Ya. and Ipatov, S.I. (2006b) Volatiles Delivery to the Terrestrial Planets, 26th IAU General Assembly, 14-25 August, 2006, Prague, Czech Republic, Abstract no. JD 11-24, 359.

    Google Scholar 

  • Marov, M.Ya. and Ipatov, S.I. (2007a) Volatiles and Biogenic Matter Delivery by Small Bodies and Dust Particles, II International Conference "Biosphere Origin and Evolution", Oct. 28 - Nov. 2, 2007, Loutraki, Greece, Abstracts Book, 13.

    Google Scholar 

  • Marov, M.Ya, Kolesnichenko, A.V., Makalkin, A.B.., et al. (2007b). Modeling the Evolution of a Protoplanetary Gas-Dust Disk and the Mechanism of the Development of Gravitational Instability. Report submitted to the Conference "Origin of the Biosphere and Photonics of Nucleic Acids", Terskol, August 6-10, 2007 (in Russian).

    Google Scholar 

  • Marov, M.Ya, Kolesnichenko, A.V., Makalkin, A.B.., et al. (2008). From protosolar cloud to the planetary system: Model of gas-dust disk evolution. In: "Problems of the biosphere origin and evolution" (Ed. E.M. Galimov), М.: URSS. p. 233.

    Google Scholar 

  • Marsden, J.E. and McCracken, M. (1976) The Hopf Bifurcation and Its Applications, Springer, New York.

    Book  MATH  Google Scholar 

  • Maser, J.K. (2007) From the Big Bang to a Nobel Prize and Further, Usp. Fiz. Nauk., 177, 1278.

    Article  Google Scholar 

  • Masevich, A.G. and Tutukov, A.V. (1988) Evolution of Stars: Theory and Observations, Nauka, Moscow (in Russian).

    Google Scholar 

  • Masser, D. (2006) Four Clues to Cosmology in Cosmos: The Almanac, Ed. by S.P. Kapitsa, V mire nauki, Moscow, 13 (in Russian).

    Google Scholar 

  • Mather, J.C., Fixsen, D.J., Shafer, R.A., et al. (1999) Calibrator Design for the COBE Far-Infrared Absolute Spectrophotometer (FIRAS), Astrophys. J., 512, 511.

    Article  ADS  Google Scholar 

  • Mathew, K.J. and Marti, K. (2001) Early Evolution of Martian Volatiles: Nitrogen and Noble Gas Components in ALH84001 and Chassigny, J. Geophys. Res., 106, 1401.

    Article  ADS  Google Scholar 

  • Mathis, J. S. (1990) Interstellar Dust and Extinction, Ann. Rev. Astron. Astrophys., 28, 37.

    Article  ADS  Google Scholar 

  • Matson, D. and Blaney D. (1999) Io in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 357.

    Google Scholar 

  • Mayer, L., Governato, F., and Kaufmann, T. (2008) The Formation of Disk Galaxies in Computer Simulations, eprint arXiv: 0801.3845.

    Google Scholar 

  • Mayor, M. and Queloz, D.A. (1995) Jupiter-Mass Companion to a Solar-Type Star, Nature, 378, 355.

    Article  ADS  Google Scholar 

  • McCinnon, W.B. and Kirk, R.L. (1999) Triton in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 405.

    Google Scholar 

  • McEwen, A.S., Keszthelyi, L., Geissler, P., et al. (1998a) Active Volcanism on Io as Seen by Galileo SSI, Icarus, 135, 181.

    Article  ADS  Google Scholar 

  • McEwen, A.S., Keszthelyi, L., Spencer, J. R., et al. (1998b) High-Temperature Sili-cate Volcanism on Jupiter’s Moon Io, Science, 281, 87.

    Article  ADS  Google Scholar 

  • McFadden, L.-A. (1999) Near-Earth Asteroids in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 607.

    Google Scholar 

  • McKay, C.P. and Davis, W.L. (1999) Planets and the Origin of Life in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 899.

    Google Scholar 

  • McKeegan, K.D. and Davis, A.M. (2003) In Meteorites, Planets, and Comets, Ed. by A.M. Davis, Vol. 1, Treatise on Geochemistry, Ed. by H.D. Holland and K.K. Turekian, Elsevier-Pergamon, Oxford, 431.

    Google Scholar 

  • McSween, H.Y., Jr. (1994) What We Have Learned about Mars from SNC Meteorites, Meteoritics, 29, 757.

    Article  ADS  Google Scholar 

  • McSween, H.Y., Jr. (1999) Meteorites and Their Parent Planets, Cambridge University Press, Cambridge.

    Google Scholar 

  • Meier, R. and Owen, T.C. (1999) Cometary Deuterium, Space Sci. Rev., 90, 33.

    Article  ADS  Google Scholar 

  • Meier, R., Smith, B., Owen, T., and Terrile, R.J. (2000) The Surface of Titan from NICMOS Observations with the Hubble Space Telescope, Icarus, 145, 462.

    Article  ADS  Google Scholar 

  • Mellon, M.T., Feldman, W.C., Prettyman, T.H. (2004) The presence and stability of ice in the southern hemisphere of Mars. Icarus. V. 169, No.2., P. 324.

    Google Scholar 

  • Melosh, H.J., Sonett, C.R. (1986) When worlds collide: jetted vapor plumes and the moon’s origin // Origin of the Moon (eds. W.K. Hartman, R.J. Phillips, G.J. Taylor) Houston: Lunar Planet. Inst. P. 621.

    Google Scholar 

  • Meyer, M.R., Backman, D.E., Weinberger, A., and Wyatt, M.C. (2007) Evolution of Circumstellar Discs around Normal Stars: Placing Our Solar System in Context in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Millan-Gabet, R., Malbet, F., Akeson, R., et al. (2007) The Circumstellar Environments of Young Stars at AU Scales in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Mitchell, J.F.B. (1989) The ‘Greenhouse’ Effect and Climate Change, Rev. Geophys., 27, 115.

    Article  ADS  Google Scholar 

  • Mitrofanov, I.G., Litvak, M.L., Kozyrev, A.S., et al. (2004) Estimate of water abundance in the Martian soil based on the data of HEND neutron measurements by spacecraft 2001 Mars Odyssey. Solar System Res. v. 38. No. 4, p. 291.

    Google Scholar 

  • Mitrofanov, I.G., and 28 co-authors (2010) Hydrogen mapping of the lunar south pole usingthe LRO neutron detector experiment LEND. Science, v.330. pp. 483-485.

    Google Scholar 

  • Monin, A.S. (1962) On the Turbulence Spectrum in a Temperature-Inhomogeneous Medium, Izv. Akad. Nauk USSR, Ser. Geoph., 3, 397.

    Google Scholar 

  • Monin, A.S. (1969) Weather Forecast as a Problem of Physics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Monin, A.S. (1988) Theoretical Foundations of Geophysical Hydrodynamics, Gidrometeoizdat, Leningrad (in Russian).

    Google Scholar 

  • Monin, A.S. and Yaglom, A.M. (1992) Statistical Hydrodynamics, Vol. 1, Gidrometeoizdat, St. Petersburg (in Russian).

    Google Scholar 

  • Monin, A.S. and Yaglom, A.M. (1996) Statistical Hydrodynamics, Vol. 2, Gidrometeoizdat, St. Petersburg (in Russian).

    Google Scholar 

  • Morbidelli, A. (1998) New Insights on the Kuiper Belt, Science, 280, 2071.

    Article  ADS  Google Scholar 

  • Morbidelli, A., Chambers, J., and Lunine, J.I. (2000) Source Regions and Timescales for the Delivery of Water to the Earth, Meteor. Planet. Sci., 35, 1309.

    Article  ADS  Google Scholar 

  • Morbidelli, A., Levison, H., Tsiganis, K., and Gomes, R. (2005) Chaotic Capture of Jupiter's Trojan Asteroids in the Early Solar System, Nature, 435, 462.

    Article  ADS  Google Scholar 

  • Moroz, V.I., Ekonomov, A.P., Moshkin, B.Ye., et al. (1985) in Venus International Reference Atmosphere, Ed. by A.J. Kliore et al., Adv. Space Res., 5, 197.

    Google Scholar 

  • Moroz, V.I., Moshkin, B.E., Ekonomov, A.P., et al. (1983) Spectrophotometric Experiment Onboard the Venera-13 and Venera-14 Landers. Preliminary Analysis of the Absorption in H2O Bands, Kosmich. Issled., 21, 246.

    Google Scholar 

  • Morrison, D., and Mattheus, M.S. (1982). Satellites of Jupiter. University of Arizona Press. Tucson, AZ

    Google Scholar 

  • Moser, J. (1962) On Invariant Curves of Area-Preserving Mappings on an Annulus, Nachr. Akad. Wiss. Coettingen Math. Phys., K1, 1.

    Google Scholar 

  • Moser, J. (1968) Lectures on Hamiltonian Systems, American Mathematical Society, Providence.

    Google Scholar 

  • Murray, C.D. (1999) Chaotic Motion in the Solar System in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 825.

    Google Scholar 

  • Murray, C.D. and Dermott, S.F. (1999) Solar System Dynamics, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Nagasawa, M., Thommes, E.W., Kenyon, S.J., et al. (2007) The Diverse Origins of Terrestrial-Planet Systems in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Najita, J.R., Carr, J.S, Glassgold, A.E., and Valenti, J.A. (2007) Gaseous Inner Discs in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Nakagawa, Y., Nakagawa, K., and Hayashi, C. (1981) Growth and Sedimentation of Dust Grains in the Primordial Solar Nebula, Icarus, 45, 517.

    Article  ADS  Google Scholar 

  • Narlikar, J.V. (1993) Introduction to Cosmology, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Nash, D.B., Carr, M.H., Gradie, J., et al. (1986) in Satellites, 629.

    Google Scholar 

  • Natta, A., Testi, L., Calvet, N., et al. (2007) Dust in Proto-planetary Discs: Properties and Evolution in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Nicolis, G. and Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • O’Dell, C.R. (1998) Observational Properties of the Orion Proplyds, Astron. J., 115, 263.

    Article  ADS  Google Scholar 

  • Obukhov, A.M. (1941) On the Energy Distribution in the Spectrum of Turbulent Flow, Izv. Akad. Nauk USSR, Serg. Geogr. Geophys., 5, 453.

    Google Scholar 

  • Obukhov, А.М. (1949) On the Geostrophic Wind, Izv. Akad. Nauk USSR, Ser. Geogr. Geoph., 13, 281.

    Google Scholar 

  • Obukhov, А.М. (1962) Some Specific Features of Atmospheric Turbulence, J. Fluid Mech., 13, 77.

    Article  MathSciNet  ADS  Google Scholar 

  • Ockert-Bell, M.E., Burns, J.A., Danbar, I.J., et al. (1999) The Structure of Jupiter’s Ring System as Revealed by the Galileo Imaging Experiment, Icarus, 138, 188.

    Article  ADS  Google Scholar 

  • Offen, J.R. and Kline, S.J. (1975) A Proposed Model of the Bursting Process in Turbulent Boundary Layer, J. Fluid. Mech., 70, 209.

    Article  ADS  Google Scholar 

  • Owen, T. and Bar-Nun, A. (1995) Comets, Impacts and Atmospheres, Icarus, 116, 215.

    Google Scholar 

  • Owen, T., Mahaffy, P., Niemann, H.B., et al. (1999) A Low-Temperature Origin for the Planetesimals that Formed Jupiter, Nature, 402, 269.

    Article  ADS  Google Scholar 

  • Owen, T.C. and Bar-Nun, A. (2001) From the Interstellar Medium to Planetary Atmospheres via Comets in Collisional Processes in the Solar System, Ed. by M.Ya. Marov and H. Rickman, Kluwer Acad. Publ., Dordrecht-Boston-London, 249.

    Google Scholar 

  • Oyama, V.I., Carle, G.C., Woeller, F., et al. (1980) Pioneer Venus Gas Chromotography of the Lower Atmosphere of Venus, J. Geophys. Res., 85, 7891.

    Article  ADS  Google Scholar 

  • Ozernoy, L.M. (1976) Vortex Theory of the Origin of Galaxies and Their Systems in Origin and Evolution of Galaxies and Stars, Ed. by S.B. Pikelner, Nauka, Moscow, 105 (in Russian).

    Google Scholar 

  • Ozernoy, L.M. and Chibisov, G.V. (1970) Dynamical Parameters of Galaxies as a Consequence of Cosmological Turbulence, Sov. Astron. J., 47, 469.

    Google Scholar 

  • Padgett, D., Brander, W., Stapelfeldt, S.S., et al. (1999) HST/NICMOS Imaging of Disks and Envelopes around Very Young Stars, Astron. J., 117, 1490.

    Article  ADS  Google Scholar 

  • Paige, D.A., and 26 co-authors (2010) Diviner lunar radiometer observations of cold traps in the Moon’s south polar region. Science, v. 330, pp. 479-482.

    Google Scholar 

  • Papaloizou, J.C.B., Nelson, R.P., Kley, W., et al. (2007) Disk-Planet Interactions during Planet Formation in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Peale, S.J., Cassen, P., and Reynolds, R.T. (1979) Melting of Io by Tidal Dissipation, Science, 203, 892.

    Article  ADS  Google Scholar 

  • Peebles, P.J.E. (1993) Principles of Physical Cosmology, Princeton University Press, Princeton.

    Google Scholar 

  • Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 mc/s, Astrophys J., 142, 419.

    Article  ADS  Google Scholar 

  • Phillips, R.J., Zuber, M.T., Solomon, S.C., et al. (2001) Ancient Geodynamics and Global Scale Hydrology on Mars, Science, 291, 2587.

    Article  ADS  Google Scholar 

  • Pieters, C.M., and 28 co-authors (2009) Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3on Chandrayaan-1. Science, v.326, No.5952, pp. 568-572.

    Google Scholar 

  • Pikelner, S.B. and Kaplan, S.A. (1976) Foundations of the Theory of Star Formation. The Origin of First-Generation Stars in Origin and Evolution of Galaxies and Stars, Ed. by S.B. Pikelner, Nauka, Moscow, 190 (in Russian).

    Google Scholar 

  • Poincare (1912), H. Calcul des Probabilites, Gauthier-Villars, Paris.

    Google Scholar 

  • Poincare, A. (1972) New Methods of Celestial Mechanics in Poincare A. Selected Works, Vols. 1 and 2, Nauka, Moscow (in Russian).

    Google Scholar 

  • Pollack, J.B. Sagan, C. (1991) Planetary Engineering in Resources of Near-Earth Space, Ed. by J. Lewis and M. Matthews, University of Arizona Press. Tucson.

    Google Scholar 

  • Pollack, J.B., Dalton, J.B., Grinspoon, D.H., et al. (1993) Near Infrared Light from Venus’ Nightside: A Spectroscopic Analysis, Icarus, 103, 1.

    Article  ADS  Google Scholar 

  • Pollack, J.B., Hollenbach, D., Beckwith, S., et al. (1994) Composition and Radiative Properties of Grains in Molecular Clouds and Accretion Disks, Astrophys. J.,421, 615.

    Google Scholar 

  • Pollack, J.B., Toon, O.B, and Boese, R. (1980) Greenhouse Models of Venus’ High Surface Temperature, as Constrained by Pioneer Venus Measurements, J. Geophys. Res., 85, 8223.

    Article  ADS  Google Scholar 

  • Pomeau, Y. and Manneville, P. (1980) Intermittent Transition to Turbulence in Dissipative Dynamical Systems, Commun. Math. Phys., 74, 189.

    Article  MathSciNet  ADS  Google Scholar 

  • Porco, C.C. (1999) Planetary Rings in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 457.

    Google Scholar 

  • Porco, C.C., Nicholson, P.D., Lissauer, J.J., et al. (1995) Neptune and Triton in Neptune’s Rings System, Ed. by D. Cruikshank, University of Arizona Press, Tucson, 703.

    Google Scholar 

  • Prigogine, I. (1997) The End of Certainty. Time, Chaos and the New Laws of Nature, Free Press, New York.

    Google Scholar 

  • Prigogine, I. and Defay, R. (1954) Chemical Thermodynamics, Longmans Green and Co., London-New York-Toronto.

    Google Scholar 

  • Prigogine, I. and Stengers, I. (1984) Order out of Chaos, Bantam, New York.

    Google Scholar 

  • Primack, J.R. and Gross, M.A.K. (2001) Hot Dark Matter in Cosmology. Current Aspects of Neutrino Physics, Ed. by D.O. Caldwell, Springer, Berlin.

    Google Scholar 

  • Primack, J.R., Holtzman, J., Klypin, A., and Caldwell, D.O. (1995) Cold and Hot Dark Matter Cosmology, Phys. Rev. Lett., 74, 2160.

    Article  ADS  Google Scholar 

  • Protostars and Planets V (2007), Ed. by B. Reipurth, D. Jewitt, and K. Keil, University of Arizona Press, Tucson.

    Google Scholar 

  • Rees, D., Roper, R.G., Lloye, K.H., and Low, C.H. (1972) Determination of the Structure of the Atmosphere between 90 and 250 km by Means of Contaminant Releases at Woomera, May, 1968, Phys. Trans. Roy. Soc. London, A271, 631.

    Article  ADS  Google Scholar 

  • Revercomb, H.E., Sromovsky, L.A., and Suomi, V.E. (1985) Net Thermal Radiation Measurements in the Atmosphere of Venus, Icarus, 61, 521.

    Article  ADS  Google Scholar 

  • Richard, D. and Zahn, J.-P. (1999) Turbulence in Differentially Rotating Flow. What Can Be Learned from the Couette-Taylor Experiment, Astron. Astrophys., 347, 734.

    Google Scholar 

  • Richardson, L.F. (1926) Atmospheric Diffusion Shown on a Distance–Neighbour graph, Proc. Roy. Soc., AIIO, no.756, 709.

    Google Scholar 

  • Rieder, R.R., Gellert, R., Anderson, R.C., Bruckner, J. (2004) Chemistry of rocks and soils at Meridian Planum from the alpha particle X-ray spectrometer. Science. V. 306. p. 1746.

    Google Scholar 

  • Rodin, A.V., and Wilson, R. (2006) Seasonal cycle of the Mars climate: Experimental data and numerical modeling. Space Res. V. 44, No. 4, p. 1.

    Google Scholar 

  • Rossow, W.B., Del Genio, A.D., Limaye, S.S., et al. (1980) Cloud Morphology and Motions from Pioneer Venus Images, J. Geophys. Res., 85, 8107.

    Article  ADS  Google Scholar 

  • Ruelle, D. and Takens, F. (1971) On the Nature of Turbulence, Commun. Math. Phys., 20, 167; 23, 343.

    Google Scholar 

  • Russell, S.S., Hartmann, L.A., Cuzzi, J.N., et al. (2006) Timescales of the Solar Protoplanetary Disk in Meteorites and the Early Solar System II, Ed. by D. Lauretta, L.A. Leshin, and H. McSween, University of Arizona Press, Tucson, 233.

    Google Scholar 

  • Safronov, V.S. (1969) Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets, Nauka, Moscow (in Russian).

    Google Scholar 

  • Safronov, V.S. (1982) Current Status of the Theory of the Earth's Origin, Dokl. Akad. Nauk USSR, Physics of the Earth, 6, 5.

    Google Scholar 

  • Safronov, V.S. (1987) Evolution of the Dust Component of the Circumsolar Protoplanetary Disk, Astron. Vestn., 21, 216.

    ADS  Google Scholar 

  • Sagan, C. (1977) Reducing Greenhouses and the Temperature History of Earth and Mars, Nature, 269, 224.

    Article  ADS  Google Scholar 

  • Sagan, C., Khare, B.N., and Lewis, J.S. (1984) Organic Matter in the Saturn system in Saturn, Ed. by T. Gehrels and M.S. Matthews, University of Arizona Press, Tucson, 788.

    Google Scholar 

  • Salpeter, E.E. (1955) The Luminosity Function and Stellar Evolution, Astrophys. J., 121, 161.

    Article  ADS  Google Scholar 

  • Samuelson, R.E. (1997) Atmospheric Thermal Structure in Encyclopedia of Planetary Sciences, Ed. by J.H. Shirley and R.H. Fairbridge, Chapman and Hall, London.

    Google Scholar 

  • Satellites of Jupiter (1982), Ed. by D. Morrison, University of Arizona Press, Tucson.

    Google Scholar 

  • Schmidt, O.Yu. (1957) Four Lectures on the Earth's Origin, 3rd Edition, USSR Academy of Sciences, Moscow (in Russian).

    Google Scholar 

  • Schneider, N.M. and Trauger, J.T. (1995) The Structure of the Io Torus, Astrophys. J., 450, 450.

    Article  ADS  Google Scholar 

  • Schneider, G., Smith, B.A., Becklin, E.E., et al. (1999) NICMOS Imaging of the HR 4796A Circumstellar Disk, Astrophys. J., 513, L127.

    Article  ADS  Google Scholar 

  • Schröder, M. (1990) Fractals, Chaos, Power Laws (Minutes from an Infinite Paradise), Freeman Company, New York.

    Google Scholar 

  • Schubert, G. (1997) Inside the Solid Planets and Moons, Phys. World, 10, 45.

    Google Scholar 

  • Schubert, G., Covey, C., Del Genio, A.D., et al. (1983) Structure and Circulation of the Venus Atmosphere, J. Geophys. Res., 85, 8007.

    Article  ADS  Google Scholar 

  • Schubert, G., Zhang, K., Kivelson, M.G., and Anderson, J. D. (1996) The Magnetic Field and Internal Structure of Ganymede, Nature, 384, 544.

    Article  ADS  Google Scholar 

  • Sedov, L.I. (1965) Similarity and Dimensional Methods in Mechanics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Seiff, A. (1983) Thermal Structure of the Atmosphere of Venus in Venus, Ed. by D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz), University of Arizona Press, Tucson, 215.

    Google Scholar 

  • Seiff, A., Shofield, J.T., Kliore, A.J., et al. (1985) Models of the Structure of the Atmosphere of Venus from the Surface to 100 Kilometers Altitude in Venus International Reference Atmosphere, Ed by A.J. Kliore et al., Adv. Space Res., 5, 3.

    Google Scholar 

  • Sekiya, M., Takeda,H.(2003) Were planetesimals formed by dust accretion in the solar nebula? Earth Planets Space.v. 55. p. 263

    Google Scholar 

  • Sekiya, M., Takeda,H.(2005) Does the gas flow through a porous dust aggregate help is growth in a protoplanetary disk? Icarus. V. 176. p.220.

    Google Scholar 

  • Shematovich, V.I., Tsvetkov, G.A, Krestyanikova, M.A, and Marov, M.Ya. (2007) Stochastic Models of Hot Planetary and Satellite Coronas: General Losses of Water in the Matrian Atmosphere, Astron. Vestn., 41, 113.

    Google Scholar 

  • Shakura N.I., Sunyaev R.A., (1973) Black holes in binary systems. Observational appearance. Astron. Astrophys. V. 24. p. 337.

    Google Scholar 

  • Shklovsky, I.S. (1975) Stars: Their Birth, Life, and Death. Nauka, Moscow (in Russian).

    Google Scholar 

  • Shklovsky, I.S. (1987) The Universe, Life, and Intelligence, Nauka, Moscow (in Russian).

    Google Scholar 

  • Shultz, P.H.,and 5 co-authors (2010) The LCROSS cratering experiment. Science v. 330, pp. 468-472.

    Google Scholar 

  • Silk, J., Szalay, A.S., and Zel'dovich, Yа.B. (1983) The Large-Scale Structure of the Universe, Sci. Am., 249, 56.

    Google Scholar 

  • Sinai, Ya.G. (1963) To the Substantiation of the Ergodic Hypothesis for One Dynamical System of Statistical Mechanics, Dokl. Akad. Nauk USSR, 6.

    Google Scholar 

  • Sinai, Ya.G. (1970) Dynamical Systems with Elastic Reflections. Ergodic Properties of Scattering Billiards, Usp. Mat. Nauk, 25, 141.

    Google Scholar 

  • Sirotkin, F. Karetnikov, V.F. (2006) Formation of Protoplanetary Systems through the Coalescence of Binary Components and Contraction to the Main Sequence,Astron. Rep., 50, 655.

    Article  ADS  Google Scholar 

  • Skorov, Yu.V., Marov, M.Ya., and Korolev, A.E. (2002) Mass Transfer in the Near-Surface Layer of a Cometary Nucleus: A Gas-Kinetic Approach, Sol. Sys. Res., 36, 87.

    Article  ADS  Google Scholar 

  • Smoot, G.F., Bennett, C.L., Kogut, A., et al. (1992) Structure in the COBE Differ-ential Microwave Radiometer First-Year Maps, Astrophys. J., 396, L1.

    Article  ADS  Google Scholar 

  • Smoot, J.F. (2007) Anisotropy of the Cosmic Microwave Background Radiation: Discovery and Scientific Significance, Usp. Fiz. Nauk, 177, 1294.

    Article  Google Scholar 

  • Spencer, J. (2001) Europa in Encyclopedia of Astronomy and Astrophysics, Nature Publishing Group аnd Institute of Physics Publishing, Dirac House, Temple Back, Bristol.

    Google Scholar 

  • Spirin, A.S. (2005) The RNA world and its evolution. Molecular Biology v. 39, No. 4, pp. 466-472.

    Article  Google Scholar 

  • Spirin, A.S. (2007) When, where, and in what environment could the RNA world appear and evolve? Paleontological J. v. 41, No. 5, pp. 481- 488.

    Article  Google Scholar 

  • Spirin, A.S. (2010) Ancient RNA world. Paleontological J. v. 44, No. 7, pp. 1-10.

    Google Scholar 

  • Spudis, P.D. (1996) The Once and Future Moon, Smithsonian Institution Press, Washington.

    Google Scholar 

  • Squyres, S.W. and Kasting, J.F. (1994) Early Mars: How Warm and How Wet? Science, 265, 744.

    Article  ADS  Google Scholar 

  • Squyres, S.W., Grotzinger, J.P., Aridson, R.E., et al. (2004) In situ evidence fot an ancient aqueous environment at Meridian Planum, Mars. Science. V. 306. P. 1709-1714.

    ADS  Google Scholar 

  • Stratonovich, R.L., (1985) Nonlinear Nonequilibrium Thermodynamics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Strom, S.E., Edwards, S., and Skrutskie, M.F. (1993) Evolutionary Time Scales for Circumstellar Disks Associated with Intermediate- and Solar-Type Stars in Protostars and planets III (A93-42937 17-90), 837.

    Google Scholar 

  • Sunyaev, R.A. and Zeldovich, Ya. B. (1972) Formation of Clusters of Galaxies: Protocluster Fragmentation and Intergalactic Gas Heating, Astron. Astrophys., 20, 189.

    ADS  Google Scholar 

  • Sunyaev, R.A. and Zeidovich Ya.B. (1972) Formation of Clusters of Galaxies: Protocluster Fragmentation and Intergalactic Gas Heating, Astron. Astrophys., 20, 189.

    ADS  Google Scholar 

  • Suomi, V.E, Sromovsky, L.A., and Revercomb, H.E. (1980) Net Radiation in the Atmosphere of Venus: Initial Results from Magellan, J. Geophys. Res., 85, 8200.

    Article  ADS  Google Scholar 

  • Sussman, G.J. and Wisdom, J. (1988) Numerical Evidence that the Motion of Pluto is Chaotic, Science, 241, 433.

    Article  ADS  Google Scholar 

  • Sussman, G.J. and Wisdom, J. (1992) Chaotic Evolution of the Solar System, Science, 257, 56.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Taylor, S.R. (1999) The Moon in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 247.

    Google Scholar 

  • Tegmark, M. (2006) Parallel Universes in Cosmos: The Almanac, Ed. by S.P.Kapitsa, V mire nauki, Moscow, 21 (in Russian).

    Google Scholar 

  • The Satellites of Jupiter (1985), Ed. by V.L. Barsukov and M.Ya. Marov, Mir, Moscow (in Russian).

    Google Scholar 

  • Tikhonov, A.N. and Arsenin, V.Ya. (1986) Methods of Solving Ill-Posed Problems, Nauka, Moscow (in Russian).

    Google Scholar 

  • Titov, D.V., Svedhem, H., Trillard, D., and Rodriguez-Canabal, J. (2004) The Ve-nus Express Team, 35th COSPAR Scientific Assembly, Paris, France, 3963.

    Google Scholar 

  • Tokano, T. (2005) Water cycle in atmosphere and shallow subsurface. In: “Water on Mars and life” (Ed. T. Tokano), Berlin-Heidelberg: Springer, P. 191-216.

    Google Scholar 

  • Tomasko, M.G. (1983) The Thermal Balance of the Lower Atmosphere of Venus in Venus, Ed. by D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz, University of Arizona Press. Tucson.

    Google Scholar 

  • Toomre, A. (1964) On the Gravitational Stability of a Disk of Stars, Astrophys. J., 139, 1217.

    Article  ADS  Google Scholar 

  • Townsend A.A. (1956) The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Trimble, V. (1987) Existence and Nature of Dark Matter in the Universe, Ann. Rev. Astron. Astrophys., 25, 425.

    Article  ADS  Google Scholar 

  • Tutukov, A.V. and Pavlyuchenkov, Ya. (2004) A Model of Astrophysical Accretion Diffusion Disks, Astron. Zh., 82, 881.

    Google Scholar 

  • Tutukov, A.V., Dremov, V.V., and Dremova, G.N. (2007) Dynamical Evolution of Galaxy Clusters in the Context of the Problem of Supermassive CD-Galaxy Formation, Astron. Zh., 84, 427.

    Google Scholar 

  • Tutukov, А.V. (1978) Early Stages of Dynamical Evolution of Star Cluster Models, Astron. Astrophys., 70, 57.

    ADS  Google Scholar 

  • Van Boekel, R., Min, M., Leinert, C., et al. (2004) The Building Blocks of Planets within the `Terrestrial' Region of Protoplanetary Disks, Nature, 432, 479.

    Article  ADS  Google Scholar 

  • Vashkov'yak, M.A. and Teslenko, N.G. (2008) Evolution of the Orbital Characteristics of Saturnian, Uranian, and Neptunian Outer Satellites, Astron. Vestn., 42.

    Google Scholar 

  • Vinogradov, A.P. (1967) Introduction to Ocean Geochemistry. Nauka, Moscow (in Russian).

    Google Scholar 

  • Vinogradov, A.P., Ed. (1975) Cosmochemistry of the Moon and Planets. Nauka, Moscow (in Russian).

    Google Scholar 

  • Vinogradov, A.P. and Volkov, V.P. (1971) On the Wollastonite Equilibrium as a Mechanism Defining the Composition of the Venusian Atmosphere, Geokhimiya, 7, 755.

    Google Scholar 

  • Volkov, V.P., Marov, M.Ya., Lebedev, V.N., Sidorov, Yu. I., and Shari, V.P. (1989) The Clouds In: The Planet Venus (Eds V.L. Barsukov and V.P. Volkov) pp. 68-94, Nauka, Moscow (in Russian).

    Google Scholar 

  • Wadhwa, M. and Russell, S.S. (2000) Timescales of Accretion and Differentiation in the Early Solar System: The Meteoritic Evidence in Protostars and Planets IV, Ed. by V. Mannings, A.P. Boss, and S.S. Russell, University of Arizona Press, Tucson, 995.

    Google Scholar 

  • Wadhwa, M., Amelin, Y., Davis, A.M., et al. (2007) From Dust to Planetesimals: Implications for the Solar Protoplanetary Disk from Short-Lived Radionuclides in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Ward, W.R. and Rudy, D. (1991) Resonant Obliquity of Mars?, Icarus, 94, 160.

    Article  ADS  Google Scholar 

  • Ward, W.R., and Hahn, M. (1998) Neptune’s Eccentricity and the Nature of the Kuiper Belt, Science, 280, 2104.

    Article  ADS  Google Scholar 

  • Ward, W.R., Murray, B.C., and Malin, M.C. (1974) Climatic Variations on Mars. 2. Evolution of Carbon Dioxide Atmosphere and Polar Caps, J. Geophys. Res., 79, 3387.

    Google Scholar 

  • Wasserburg, G.J. (1985) Short-Lived Nuclei in the Early Solar System in Protostars and Planets II, Ed. by D.C. Black and M.S. Matthews, University of Arizona Press, Tucson, 703.

    Google Scholar 

  • Wasserburg, G.J. and Papanastassiou, D.A. (1982) Some Short-Lived Nuclides in the Early Solar System – Connection with the Original Interstellar Medium in Essays in Nuclear Astrophysics, Ed. by C.A. Barnes et al., Cambridge University Press, Cambridge, 85.

    Google Scholar 

  • Watson, A.M., Stapelfeldt, K.R., Wood, K., and Menard, F. (2007) Multi-wavelength Imaging of Young Stellar Object Discs: Toward an Understanding of Disc Structure and Dust Grain Evolution in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Watson, L.L., Hutcheon, I.D., Epstein, S., and Stolper, E.M. (1994) Water on Mars: Clues from Deuterium/Hydrogen and Water Contents of Hydrous Phases in SNC Meteorites, Science, 265, 86.

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J. (1997) The Origin of Comets in the Solar Nebula: A Unified Model, Icarus, 127, 290.

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J. (2000a) Formation of Planetesimals in the Solar Nebula in Protostars and Planets III, Ed. by E.H. Levy and J.I. Lunine, University of Arizona Press, Tucson

    Google Scholar 

  • Weidenschilling, S.J. (2000b) Formation of Planetesimals and Accretion of the Terrestrial Planets, Space Sci. Rev., 92, 295.

    Article  ADS  Google Scholar 

  • Weissman, P.R. (1996) The Oort Cloud in Completing the Inventory of the Solar System, Ed. by T.W. Rettig and J.M. Hahn, ASP Conference Series 107, 265.

    Google Scholar 

  • West, R.A. (1999) Atmospheres of the Giant Planets in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 315.

    Google Scholar 

  • West, R.A., Strobel, D.F., and Tomasko, M.G. (1986) Clouds, Aerosols and Photochemistry in the Jovian Atmosphere, Icarus, 65, 161.

    Google Scholar 

  • Wetherill, G.W. (1990) Formation of the Earth, Ann. Rev. Earth Planet. Sci., 18, 205.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. and Stewart, G.R. (1989) Accumulation of a Swarm of Small Planetesimals, Icarus, 77, 330.

    Article  ADS  Google Scholar 

  • Whipple, F.L. (1951) A Comet Model. II. Physical Relations for Comets and Meteors, Astrophys. J., 113, 464.

    Google Scholar 

  • White, S.D.M., Frenk, C.S., and Davis, M. (1983) Clustering in a Neutrino-Dominated Universe, Astrophys. J., 274, L1.

    Article  ADS  Google Scholar 

  • Whitworth, A., Bate, M. R., Nordlund, A., et al. (2007) The Formation of Brown Dwarfs: Theory in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Wilhelms, D. E. (1993) To a Rocky Moon: a Geologist’s History of Lunar Exploration, University of Arizona Press, Tucson.

    Google Scholar 

  • Wilson, L. (1999) Planetary Volcanism in Encyclopedia of the Solar System, Ed. by P.R. Weissman, L.-A. McFadden, and T.V. Johnson, Academic Press, San Diego, 877.

    Google Scholar 

  • Wisdom, J. (1987) Urey Prize Lecture: Chaotic Dynamics in the Solar System, Icarus, 72, 241.

    Article  ADS  Google Scholar 

  • Woo, R., Armstrong, J.W., and Kliore, A.J. (1982) Small Scale Turbulence in the Atmosphere of Venus, Icarus, 52, 12.

    Article  Google Scholar 

  • Wooden, D., Desch, S., Harker, D., et al. (2007) Comet Grains and Implications for Heating and Radial Mixing in the Protoplanetary Disk in Protostars and Planets V, Arizona Press, AZ.

    Google Scholar 

  • Youdin, A.N. and Shu, F. (2002) Planetesimal Formation by Gravitational Instability, Astrophys. J., 580, 494.

    Article  ADS  Google Scholar 

  • Zaslavsky, G.M. (2004) Physics of Chaos in Hamiltonian Systems, "Regular and Chaotic Dynamics" Research Center, Institute of Computer Research, Moscow-Izhevsk (in Russian).

    Google Scholar 

  • Zel’dovich, Ya.B. (1981) On the Friction of Fluids between Rotating Cylinders, Proc. Roy. Soc. London, A374, 299.

    MathSciNet  ADS  Google Scholar 

  • Zel'dovich Ya.B. (1983) Structure of the Universe in Results of Sciences and Engineering. Astronomy, Ed. by R.A. Sunaev), 22, 4 (in Russian).

    Google Scholar 

  • Zel'dovich, Ya.B. and Raizer, Yu.P. (1966) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Nauka, Moscow (in Russian).

    Google Scholar 

  • Zharkov V.N. and Gudkova, T.V. (2005) Construction of Martian Interior Model, Sol. Sys. Res., 39, 343.

    Article  ADS  Google Scholar 

  • Zhithik, I.A., Kuzin, S.V., Sobelman I.I., et al. (2005) Main Results of the SPIRIT Experiment Onboard the CORONAS-F Satellite, Sol. Sys. Res., 39, 442.

    Article  ADS  Google Scholar 

  • Zuber, M.T., Solomon, S.C., Phillips, R.J., et al. (2000) Internal Structure and Ear-ly Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity, Science, 287, 1788.

    Article  ADS  Google Scholar 

  • Zuckerman, B. and Becklin, E.E. (1993) Submillimeter Studies of Main-Sequence Stars, Astrophys. J., 414, 793.

    Article  ADS  Google Scholar 

  • Zurek, R.W., Barnes, J.R., Haberle, R.M. et al. (1992) Dynamics of the Atmosphere of Mars in Mars, Ed. by H.H. Kieffer et al., University of Arizona Press, Tucson, 835.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marov, M.Y., Kolesnichenko, A.V. (2013). Turbulent Chaos and Self-Organization in Cosmic Natural Media. In: Turbulence and Self-Organization. Astrophysics and Space Science Library, vol 389. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5155-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5155-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5154-9

  • Online ISBN: 978-1-4614-5155-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics