Advertisement

Homogeneous and Non-homogeneous Algorithms

  • Ioannis Paparrizos
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 31)

Abstract

Motivated by recent best case analyses for some sorting algorithms and based on the type of complexity we partition the algorithms into two classes: homogeneous and non-homogeneous algorithms.1 Although both classes contain algorithms with worst and best cases, homogeneous algorithms behave uniformly on all instances. This partition clarifies in a completely mathematical way the previously mentioned terms and reveals that in classifying an algorithm as homogeneous or not best case analysis is equally important with worst case analysis.

Key words

Algorithm analysis Algorithm complexity Algorithm classification 

Notes

Acknowledgements

We thank an anonymous referee for useful suggestions and for bringing to our attention the reference [17].

References

  1. 1.
    Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection. J. Comp. Syst. Sci. 7(4), 448–461 (1973)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bollobas, B., Fenner, T.I., Frieze, A.M.: On best case of heapsort. J. Algorithms 20, 205–217 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brassard, G.: Crusade for a better notation. ACM Sigact News 17(1), 60–64 (1985)CrossRefGoogle Scholar
  4. 4.
    Ding, Y., Weiss, M.A.: Best case lower bounds for Heapsort. Computing 49, 1–9 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Dutton, R.: Weak-heapsort. BIT 33, 372–381 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Edelkamp, S., Wegener, I.: On the performance of weak heasort, STACS. Lecture Notes in Computer Science, pp. 254–266. Springer, Berlin (2000)Google Scholar
  7. 7.
    Edelkamp, S., Stiegeler, P.: Implementing heapsort with nlogn − 0. 9n and quicksort with nlogn + 0. 2n comparisons. ACM J. Exp. Algorithmics (JEA) 7(1), 1–20 (2002)Google Scholar
  8. 8.
    Fleischer, R.: A tied lower bound for the worst case of bottom-up heapsort. Algorithmica 11, 104–115 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Floyd, R. Algorithm 245: treesort 3. Comm. ACM 7, 701 (1964)CrossRefGoogle Scholar
  10. 10.
    Gurevich, Y.: What does O(n) mean? ACM Sigact News 17(4), 61–63 (1986)CrossRefGoogle Scholar
  11. 11.
    Haralick, R.M., Elliot, G.L.: Increase tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)CrossRefGoogle Scholar
  12. 12.
    Hoare, A.: Quicksort. Comp. J. 5, 10–15 (1962) sGoogle Scholar
  13. 13.
    Knuth, D.: Big omicron and big theta and big omega. ACM Sigact News 8(2), 18–23 (1976)CrossRefGoogle Scholar
  14. 14.
    Nadel, B.A.: The consistent labeling problem and its algorithms: Towards exact-case complexities and theory-based heuristics. Ph.D. dissertation, Department of Computer Science, Rutgers University, New Brunswick, NJ, May (1986)Google Scholar
  15. 15.
    Nadel, B.A.: The complexity of constraint satisfaction in Prolog. In: Proceedings of the 8th National Conference Artificial Intell. (AAAI‘90)pp. 33–39, Boston, MA, August 1990. An expanded version is available as Technical Report CSC-89-004, Department of Computer Science, Wayne State University, Detroit, MI (1989)Google Scholar
  16. 16.
    Nadel, B.A.: Representation selection for constrain satisfaction: a case study using n-queens. IEEE Expert 5(3), 16–23 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nadel, B.A.: Precision complexity analysis: a case study using insertion sort. Inf. Sci. 73, 139–189 (1993)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Nudel, B.A.: Solving the general consistent labeling (or constraint satisfaction) problem: two algorithms and their expected complexities. In: Proceedings of the 3rd National Conference Artificial Intell. (AAAI‘83), pp. 292–296, Washington, DC, Aug (1983)Google Scholar
  19. 19.
    Paparrizos, I.: Homogeneous and non-homogeneous algorithms. In: Proceedings of the 13th Panhellenic Conference on Informatics (PCI’09), September (2009)Google Scholar
  20. 20.
    Schaffer, R., Sedgwick, R.: The analysis of heapsort. J. Algorithms 15, 76–100 (1993)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Wang, X.D., Wu, Y.J.: An improved heapsort algorithm with nlogn − 0. 788928n comparisons in the worst case. J. Comp. Sci. Tech. 22(6), 898–903 (2007)Google Scholar
  22. 22.
    Williams, J.W.J.: Algorithm 232: heapsort. Comm. ACM 6, 347–348 (1964)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Computer Science DepartmentColumbia UniversityNew YorkUSA

Personalised recommendations