Skip to main content

Solving Linear Systems with Polynomial Parameter Dependency with Application to the Verified Solution of Problems in Structural Mechanics

  • Chapter
  • First Online:
Optimization, Simulation, and Control

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 76))

Abstract

We give a short survey on methods for the enclosure of the solution set of a system of linear equations where the coefficients of the matrix and the right hand side depend on parameters varying within given intervals. Then we present a hybrid method for finding such an enclosure in the case that the dependency is polynomial or rational. A general-purpose parametric fixed-point iteration is combined with efficient tools for range enclosure based on the Bernstein expansion of multivariate polynomials. We discuss applications of the general-purpose parametric method to linear systems obtained by standard finite element analysis of mechanical structures and illustrate the efficiency of the new parametric solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Preliminary results were presented at the 2nd International Conference on Uncertainty in Structural Dynamics, Sheffield, UK, June 15–17, 2009.

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic, New York (1983)

    MATH  Google Scholar 

  2. Cargo, G.T., Shisha, O.: The Bernstein form of a polynomial. J. Res. Nat. Bur. Standards 70B, 79–81 (1966)

    MathSciNet  Google Scholar 

  3. Corliss, G., Foley, C., Kearfott, R.B.: Formulation for reliable analysis of structural frames. Reliab. Comput. 13, 125–147 (2007)

    Article  MATH  Google Scholar 

  4. Dessombz, O., Thouverez, F., Laîné, J.-P., Jézéquel, L.: Analysis of mechanical systems using interval computations applied to finite element methods. J. Sound Vibrat. 239(5), 949–968 (2001)

    Article  MATH  Google Scholar 

  5. Dreyer, A.: Interval Analysis of Analog Circuits with Component Tolerances. Shaker-Verlag, Aachen, Germany (2005)

    MATH  Google Scholar 

  6. Dreyer, A.: Interval methods for analog circuits. Report No. 97, Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern, Germany (2006)

    Google Scholar 

  7. European Standard: Eurocode 3: Design of Steel Structures. European Committee for Standardization, Ref.No. prEN 1993-1-1:2003 E, Brussels (2003)

    Google Scholar 

  8. Franzen, R.: Die intervallanalytische Behandlung parameterabhängiger Gleichungssysteme. Berichte der GMD, vol. 47, Bonn (1971)

    Google Scholar 

  9. Franzen, R.: Die Konstruktion eines Approximationspolynoms für die Lösungen parameterabhängiger Gleichungssysteme. Z. Angew. Math. Mech. 52, T202–T204 (1972)

    MATH  Google Scholar 

  10. Ganesan, A., Ross, S.R., Barmish, B.R.: An extreme point result for convexity, concavity and monotonicity of parameterized linear equation solutions. Linear Algebra Appl. 390, 61–73 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Nickel, K. (ed.) Interval Mathematics 1985, Lect. Notes in Comp. Sci., vol. 212, pp. 37–56. Springer, Berlin (1986)

    Chapter  Google Scholar 

  12. Garloff, J., Popova, E.D., Smith, A.P.: Solving linear systems with polynomial parameter dependency. Preprint No.1/2009, Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Department of Biomathematics, Sofia (2009). http://www.math.bas.bg/~epopova/papers/09Preprint-GPS.pdf

  13. Garloff, J., Smith, A.P., Werkle, H.: A verified monotonicity-based solution of a simple finite element model with uncertain node locations. Proc. Appl. Math. Mech. (PAMM) 10, 157–158 (2010)

    Article  Google Scholar 

  14. Hladík, M.: Enclosures for the solution set of parametric interval linear systems. KAM-DIAMATIA Series No. 2010–983, Department of Applied Mathematics, Charles University, Prague, Czech Republic (2010)

    Google Scholar 

  15. Kolev, L.V.: Improvement of a direct method for outer solution of linear parametric systems. Reliab. Comput. 12, 193–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lagoa, C.M., Barmish, B.R.: Distributionally robust Monte Carlo simulation: A tutorial survey. In: Proceedings of the 15th IFAC World Congress, pp. 1327–1338 (2002). http://www.ece.lsu.edu/mcu/lawss/add_materials/BRossBarmishTutorial.pdf

  18. Lerch, M., Tischler, G., Wolff von Gudenberg, J.: filib++ – Interval library specification and reference manual. Technical Report 279, University of Würzburg (2001)

    Google Scholar 

  19. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.: filib++, a fast interval library supporting containment computations. ACM Trans. Math. Software 32(2), 299–324 (2006). http://www2.math.uni-wuppertal.de/org/WRST/software/filib.html

  20. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14, 611–615 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muhanna, R.L., Zhang, H., Mullen, R.L.: Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliab. Comput. 13, 173–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Popova, E.D.: Generalizing the parametric fixed-point iteration. Proc. Appl. Math. Mech. (PAMM) 4(1), 680–681 (2004)

    Google Scholar 

  24. Popova, E.D.: Parametric interval linear solver. Numer. Algorithms 37(1–4), 345–356 (2004)

    Article  MATH  Google Scholar 

  25. Popova, E.D.: Strong regularity of parametric interval matrices. In: Dimovski, I., et al. (eds.) Mathematics & Education in Mathematics, pp. 446–451. IMI-BAS, Sofia (2004)

    Google Scholar 

  26. Popova, E.D.: Solving linear systems whose input data are rational functions of interval parameters. In: Boyanov, T., et al. (eds.) NMA 2006, Lect. Notes in Comp. Sci., vol. 4310, pp. 345–352. Springer, Berlin (2007). Extended version in: Preprint 3/2005, Institute of Mathematics and Informatics, BAS, Sofia (2005). http://www.math.bas.bg/~epopova/papers/05PreprintEP.pdf

  27. Popova, E.D.: Improved solution enclosures for over- and underdetermined interval linear systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing 2005, Lect. Notes in Comp. Sci., vol. 3743, pp. 305–312. Springer, Berlin (2006)

    Chapter  Google Scholar 

  28. Popova, E.D.: Computer-assisted proofs in solving linear parametric problems. In: Luther, W., Otten, W. (eds.) IEEE–Proceedings of SCAN 2006, 12th GAMM–IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Duisburg, Germany, pp. 35–43. IEEE Computer Society Press, Library of Congress Number 2007929345 (2007)

    Google Scholar 

  29. Popova, E.D., Iankov, R., Bonev, Z.: Bounding the response of mechanical structures with uncertainties in all the parameters. In: Muhanna, R.L., Mullen, R.L. (eds.) Proceedings of the NSF Workshop on Reliable Engineering Computing, Savannah, Georgia, pp. 245–265 (2006)

    Google Scholar 

  30. Popova, E.D., Iankov, R., Bonev, Z.: FEM model of a two-bay two-story steel frame – 2 benchmark examples (2009). http://www.math.bas.bg/~epopova/papers/2bay2storyProblems.pdf

  31. Popova, E.D., Krämer, W.: Inner and outer bounds for the solution set of parametric linear systems. J. Comput. Appl. Math. 199(2), 310–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Prautzsch, H., Boehm, W., Paluszny, M.: Bezier and B-Spline Techniques. Springer, Berlin (2002)

    MATH  Google Scholar 

  33. Rump, S.: New results on verified inclusions. In: Miranker, W.L., Toupin, R. (eds.) Accurate Scientific Computations, Lect. Notes in Comp. Sci., vol. 235, p. 31–69. Springer, Berlin (1986)

    Chapter  Google Scholar 

  34. Rump, S.: Verification methods for dense and sparse systems of equations. In: Herzberger, J. (ed.) Topics in Validated Computations, pp. 63–135. North-Holland, Amsterdam (1994)

    Google Scholar 

  35. Śkalna, I.: Parametric fuzzy linear systems. In: Castillo, O., et al. (eds.) Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Advances in Soft Computing, vol. 42, pp. 556–564. Springer, Berlin (2007)

    Chapter  Google Scholar 

  36. Śkalna, I.: Direct method for solving parametric interval linear systems with non-affine dependencies. In: Parallel Processing and Applied Mathematics, 8th International Conference (PPAM 2009), Wroclaw, Poland, Sept 13–16 2009. Revised Selected Papers, Part II, In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J.W. (eds.) Lect. Notes in Comp. Sci., vol. 6068, pp. 485–494 (2010)

    Google Scholar 

  37. Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J. Global Optim. 43(2–3), 445–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Smith, A.P., Garloff, J., Werkle, H.: Verified solution for a simple truss structure with uncertain node locations. In: Gürlebeck, K., Könke, C. (eds.) Proceedings of the 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, Germany (2009)

    Google Scholar 

  39. Smith, A.P., Garloff, J., Werkle, H.: A method for the verified solution of finite element models with uncertain node locations. To appear in 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP11), Zürich, Switzerland (2011)

    Google Scholar 

  40. Wolfram Research Inc.: Mathematica, Version 5.2. Champaign, Illinois (2005)

    Google Scholar 

  41. Zettler, M., Garloff, J.: Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion. IEEE Trans. Automat. Contr. 43, 425–431 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, H.: Nondeterministic Linear Static Finite Element Analysis: An Interval Approach. Ph.D. thesis, School of Civil and Environment Engineering, Georgia Institute of Technology (2005)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the State of Baden-Württemberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Garloff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garloff, J., Popova, E.D., Smith, A.P. (2013). Solving Linear Systems with Polynomial Parameter Dependency with Application to the Verified Solution of Problems in Structural Mechanics. In: Chinchuluun, A., Pardalos, P., Enkhbat, R., Pistikopoulos, E. (eds) Optimization, Simulation, and Control. Springer Optimization and Its Applications, vol 76. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5131-0_19

Download citation

Publish with us

Policies and ethics