Skip to main content

Is the Distance Geometry Problem in NP?

  • Chapter
  • First Online:
Distance Geometry

Abstract

Given a weighted undirected graph \(G = (V,E,d)\) with \(d : E \rightarrow {\mathbb{Q}}_{+}\) and a positive integer K, the distance geometry problem (DGP) asks to find an embedding \(x : V \rightarrow {\mathbb{R}}^{K}\) of G such that for each edge \(\{i,j\}\) we have \(\|{x}_{i} - {x}_{j}\| = {d}_{ij}\). Saxe proved in 1979 that the DGP is NP-complete with K = 1 and doubted the applicability of the Turing machine model to the case with K > 1, because the certificates for YES instances might involve real numbers. This chapter is an account of an unfortunately failed attempt to prove that the DGP is in NP for K = 2. We hope that our failure will motivate further work on the question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark, B., Colburn, C., Johnson, D.: Unit disk graph. Discrete Math. 86, 165–177 (1990)

    Google Scholar 

  2. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  3. Cremona, L.: Le figure reciproche nella statica grafica. In: Bernardoni, G., Milano (1872)

    Google Scholar 

  4. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A.,  Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, 2673–2684 (2004)

    Google Scholar 

  5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, New York (1979)

    Google Scholar 

  6. Graver, J.: Rigidity matroids. SIAM J. Discrete Math. 4, 355–368 (1991)

    Google Scholar 

  7. Graver, J., Servatius, B., Servatius, H.: Combinatorial rigidity. Am. Math. Soc. (1993) http://books.google.com.pe/books/about/Combinatorial_Rigidity.html?id=0XwvY1GVNN4C

  8. Hägglöf, K., Lindberg, P., Svensson, L.: Computing global minima to polynomial optimization problems using gröbner bases. J. Global Optim. 7(2), 115–125 (1995)

    Google Scholar 

  9. Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)

    Google Scholar 

  10. Henneberg, L.: Die Graphische Statik der starren Systeme. Teubner, Leipzig (1911)

    Google Scholar 

  11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Google Scholar 

  12. Levine, R., Mason, T., Brown, D.: Lex and Yacc, 2nd edn. O’Reilly, Cambridge (1995)

    Google Scholar 

  13. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res.18, 33–51 (2010)

    Google Scholar 

  14. Maplesoft, Inc.: Maple 9 Getting Started Guide. Maplesoft, Waterloo (2003) http://www.maplesoft.com/products/maple/manuals/GettingStartedGuide.pdf

  15. Maxwell, J.: On the calculation of the equilibrium and stiffness of frames. Phil. Mag. 27(182), 294–299 (1864)

    Google Scholar 

  16. Mosses, P.: Denotational semantics, In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science B: Formal Models and Semantics, pp. 575–631. Elsevier, Amsterdam (1990)

    Google Scholar 

  17. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optimization Letters, Springer: 6(8), 1671–1686 (2012)

    Google Scholar 

  18. Saviotti, C.: Nouvelles méthodes pour le calcul des travures réticulaires In: Appendix to Cremona, L., “Les figures réciproques en statique graphique”, pp. 37–100. Gauthier-Villars, Paris (1885)

    Google Scholar 

  19. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  20. Servatius, B., Servatius, H.: Generic and abstract rigidity, In: Thorpe, M., Duxbury, P. (eds.) Rigidity Theory and Applications, Fundamental Materials Research, pp. 1–19. Springer, New York (2002) DOI: 10.1007/0-306-47089-6_1

    Google Scholar 

  21. So, A.M.C., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math. Program. B 109, 367–384 (2007)

    Google Scholar 

  22. Stewart, I.: Galois Theory, 2nd edn. Chapman and Hall, London (1989)

    Google Scholar 

  23. Tay, T.S., Whiteley, W.: Generating isostatic frameworks. Structural Topology 11, 21–69 (1985)

    Google Scholar 

  24. Varignon, P.: Nouvelle Mecanique. Claude Jombert, Paris (1725)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Glusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beeker, N., Gaubert, S., Glusa, C., Liberti, L. (2013). Is the Distance Geometry Problem in NP?. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_5

Download citation

Publish with us

Policies and ethics