Skip to main content

The Discretizable Molecular Distance Geometry Problem seems Easier on Proteins

  • Chapter
  • First Online:

Abstract

Distance geometry methods are used to turn a set of interatomic distances given by Nuclear Magnetic Resonance (NMR) experiments into a consistent molecular conformation. In a set of papers (see the survey [8]) we proposed a Branch-and-Prune (BP) algorithm for computing the set X of all incongruent embeddings of a given protein backbone. Although BP has a worst-case exponential running time in general, we always noticed a linear-like behaviour in computational experiments. In this chapter we provide a theoretical explanation to our observations. We show that the BP is fixed-parameter tractable on protein-like graphs and empirically show that the parameter is constant on a set of proteins from the Protein Data Bank.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berman, H. Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)

    Google Scholar 

  2. Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33, 549–563 (2005)

    Google Scholar 

  3. Crippen, G., Havel, T.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    Google Scholar 

  4. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 26, 321–333 (2003)

    Google Scholar 

  5. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, 2673–2684 (2004)

    Google Scholar 

  6. Graver, J.E., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Math., AMS (1993)

    Google Scholar 

  7. Lavor, C. Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6, 783–796 (2012)

    Google Scholar 

  8. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Google Scholar 

  9. Lavor, C., Liberti, L. Maculan, N. Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Google Scholar 

  10. Lavor, C., Liberti, L., Mucherino, A.: On the solution of molecular distance geometry problems with interval data. In: IEEE Conference Proceedings, International Workshop on Computational Proteomics (IWCP10), International Conference on Bioinformatics and Biomedicine (BIBM10), Hong Kong, 77–82 (2010)

    Google Scholar 

  11. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein backbones by using artificial backbones of hydrogens. J. Global Optim. 50, 329–344 (2011)

    Google Scholar 

  12. Liberti, L., Lavor, C.: On a relationship between graph realizability and distance matrix completion. In: Kostoglou, V., Arabatzis, G., Karamitopoulos, L. (eds.) Proceedings of BALCOR, vol. I, pp. 2–9. Hellenic OR Society, Thessaloniki (2011)

    Google Scholar 

  13. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Google Scholar 

  14. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

    Google Scholar 

  15. Liberti, L., Masson, B., Lavor, C., Lee, J., Mucherino, A.: On the number of solutions of the discretizable molecular distance geometry problem, Tech. Rep. 1010.1834v1[cs.DM], arXiv (2010)

    Google Scholar 

  16. Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A.: On the number of solutions of the discretizable molecular distance geometry problem, Lecture Notes in Computer Science. In: Wang, W., Zhu, X., Du, D-Z. (eds.) Proceedings of the 5th Annual International Conference on Combinatorial Optimization and Applications (COCOA11), Zhangjiajie, China, vol.6831, pp. 322–342 (2011)

    Google Scholar 

  17. Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7(3), 814–846 (1997)

    Google Scholar 

  18. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem, to appear in Optimization Letters (DOI:10.1007/s11590-011-0358-3).

    Google Scholar 

  19. Mucherino, A., Liberti, L., Lavor, C.: MD-jeep: an implementation of a branch and prune algorithm for distance geometry problems, Lectures Notes in Computer Science. In: Fukuda, K., et al. (eds.) Proceedings of the Third International Congress on Mathematical Software (ICMS10), Kobe, Japan, vol. 6327, pp. 186–197 (2010)

    Google Scholar 

  20. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of \(1{7}^{th}\) Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  21. Schlick, T.: Molecular Modelling and Simulation: An Interdisciplinary Guide. Springer, New York (2002)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Brazilian research agencies FAPESP and CNPq and the French research agency CNRS and École Polytechnique for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mucherino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liberti, L., Lavor, C., Mucherino, A. (2013). The Discretizable Molecular Distance Geometry Problem seems Easier on Proteins. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_3

Download citation

Publish with us

Policies and ethics