An Overview on Protein Structure Determination by NMR: Historical and Future Perspectives of the use of Distance Geometry Methods

  • Fabio C. L. Almeida
  • Adolfo H. Moraes
  • Francisco Gomes-Neto

Abstract

Determination of the protein high-resolution structures is essential for the understanding of complex biological mechanisms, for the development of biotechnological methods, and for other applications such as drug discovery. Protein structures solved by nuclear magnetic resonance (NMR) rely on a set of semiquantitative short-range distances and angles information. The exploration of the whole conformational space imposed by the experimental restraints is not a computationally simple problem. The lack of precise distances and angles does not allow to find solutions to this problem by fast geometric algorithms. The main idea is to define an atomic model for the protein structure and to exploit all known geometric angle and distance information along with the semi-quantitative short-range experimental information from NMR. We give an overview of the development of computational methods aimed at solving the problem either by metric matrix distance geometry or using other methods such as simulated annealing. We also discuss future demands and perspectives for structural calculations using NMR data. The need of determining larger and more complex protein structures implies the strong necessity of developing new methods for structural calculation with sparse data.

Keywords

Anisotropy Hydroxyl Tyrosine Amide Serine 

Notes

Acknowledgments

We are grateful to Prof. Antonio Mucherino and Prof. Carlile Lavor for the edition and revision of this chapter.

References

  1. 1.
    Bax, A., Kontaxis, G., Tjandra, N.: Dipolar couplings in macromolecular structure determination. Nucl. Magn. Reson. Biolog. Macromol., Pt B 339, 127–174 (2001)Google Scholar
  2. 2.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  3. 3.
    Braun, W.: Distance geometry and related methods for protein-structure determination from NMR data. Q. Rev. Biophys. 19(3–4), 115–157 (1987)CrossRefGoogle Scholar
  4. 4.
    Braun, W., Bösch, C., Brown, L.R., Go, N., Wüthrich, K.: Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Application to micelle-bound glucagon. Biochimica Et Biophysica Acta 667(2), 377–396 (1981)CrossRefGoogle Scholar
  5. 5.
    Braun, W., Go, N.: Calculation of protein conformations by proton proton distance constraints – A new efficient algorithm. J. Mol. Biol. 186(3), 611–626 (1985)CrossRefGoogle Scholar
  6. 6.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM – a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)CrossRefGoogle Scholar
  7. 7.
    Brünger, A.T.: Version 1.2 of the crystallography and NMR system. Nat. Protocol. 2(11), 2728–2733 (2007)Google Scholar
  8. 8.
    Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., Warren, G.L.: Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallographica, Section D, Biological Crystallography 54, 905–921 (1998)CrossRefGoogle Scholar
  9. 9.
    Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M. Jr., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRefGoogle Scholar
  10. 10.
    Clore, G.M., Gronenborn, A.M., Bax, A.: A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Mag. Reson. 133(1), 216–221 (1998)CrossRefGoogle Scholar
  11. 11.
    Clore, G.M., Gronenborn, A.M., Tjandra, N.: Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Mag. Reson. 131(1), 159–162 (1998)CrossRefGoogle Scholar
  12. 12.
    Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M., Kuszewski, J.: Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints. J. Am. Chem. Soc. 121(27), 6513–6514 (1999)CrossRefGoogle Scholar
  13. 13.
    Collet, J.F., Messens, J.: Structure, function, and mechanism of thioredoxin proteins. Antioxidants & Redox Signaling 13(8), 1205–1216 (2010)CrossRefGoogle Scholar
  14. 14.
    Davis, R.T., Ernst, C., Wu, D.: Protein structure determination via an efficient geometric build-up algorithm. BMC Struct. Biol. 10(1):S7 (2010)CrossRefGoogle Scholar
  15. 15.
    Donaldson, L.W., Skrynnikov, N.R., Choy, W.-Y., Muhandiram, D.R., Sarkar, B., Forman-Kay, J.D., Kay, L.E.: Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J. Am. Chem. Soc. 123(40), 9843–9847 (2001)CrossRefGoogle Scholar
  16. 16.
    Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 26, 321–333 (2003)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Ellgaard, L., Bettendorff, P., Braun, D., Herrmann, T., Fiorito, F., Jelesarov, I., Guntert, P., Helenius, A., Wüthrich, K.: NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. J. Mol. Biol. 322(4), 773–784 (2002)CrossRefGoogle Scholar
  18. 18.
    Engh, R.A., Huber, R.: Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallographica, Section A 47, 392–400 (1991)CrossRefGoogle Scholar
  19. 19.
    Fiorito, F., Herrmann, T., Damberger, F.F., Wüthrich, K.: Automated amino acid side-chain NMR assignment of proteins using (13)C- and (15)N-resolved 3D (1)H,(1)H -NOESY. J. Biomol. NMR 42(1), 23–33 (2008)CrossRefGoogle Scholar
  20. 20.
    Galvão-Botton, L.M.P., Katsuyama, A.M., Guzzo, C.R., Almeida, F.C., Farah, C.S., Valente, A.P.: High-throughput screening of structural proteomics targets using NMR. FEBS Lett. 552(2–3), 207–213 (2003)CrossRefGoogle Scholar
  21. 21.
    Gillespie, J.R., Shortle, D.: Characterization of long-range structure in the denatured state of staphylococcal nuclease; 2. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J. Mol. Biol. 268(1), 170–184 (1997)Google Scholar
  22. 22.
    Guntert, P.: Structure calculation of biological macromolecules from NMR data. Q. Rev. Biophys. 31(2), 145–237 (1988)CrossRefGoogle Scholar
  23. 23.
    Guntert, P., Braun, W., Wüthrich, K.: Efficient computation of 3-dimensional protein structures in solution from Nuclear-Magnetic-Resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217(3), 517–530 (1991)CrossRefGoogle Scholar
  24. 24.
    Guntert, P., Mumenthaler, C., Wüthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273(1), 283–298 (1997)CrossRefGoogle Scholar
  25. 25.
    Havel, T.F.: An evaluation of computational strategies for use in the determination of protein-structure from distance constraints obtained by Nuclear-Magnetic-Resonance. Progr. Biophys. Mol. Biol. 56(1), 43–78 (1991)CrossRefGoogle Scholar
  26. 26.
    Havel, T.F., Wüthrich, K.: A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular H-1-H-1 proximities in solution. Bull. Math. Biol. 46(4), 673–698 (1984)MATHGoogle Scholar
  27. 27.
    Havel, T.F., Wagner, G., Wüthrich, K.: Spatial structures for BPTI in the crystal and in solution from distance geometry calculations. Experientia 40(6), 608–608 (1984)Google Scholar
  28. 28.
    Herrmann, T., Guntert, P., Wüthrich, K.: Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24(3), 171–189 (2002)CrossRefGoogle Scholar
  29. 29.
    Holmgren, A.: Antioxidant function of thioredoxin and glutaredoxin systems. Antioxidants & Redox Signaling 2(4), 811–820 (2000)CrossRefGoogle Scholar
  30. 30.
    Holmgren, A., Bjornstedt, M.: Thioredoxin and thioredoxin reductase. Methods Enzymol 252, 199–208 (1995)CrossRefGoogle Scholar
  31. 31.
    Iwahara, J., Schwieters, C.D., Clore, G.M.: Ensemble approach for NMR structure refinement against H-1 paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc. 126(18), 5879–5896 (2004)CrossRefGoogle Scholar
  32. 32.
    Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRefGoogle Scholar
  33. 33.
    Karplus, M.: Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 85(18), 2870–2871 (1963)CrossRefGoogle Scholar
  34. 34.
    Kauzmann, W.: Three-dimensional structures of proteins. Biophys. J. 4, 43–54 (1964)CrossRefGoogle Scholar
  35. 35.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Kumar, A., Wagner, G., Ernst, R.R., Wuethrich, K.: Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic-resonance spectroscopy – Implications for studies of protein conformation. J. Am. Chem. Soc. 103(13), 3654–3658 (1991)CrossRefGoogle Scholar
  37. 37.
    Kuszewski, J., Qin, J., Gronenborn, A.M., Clore, G.M.: The impact of direct refinement against C-13(Alpha) and C-13(Beta) chemical-shifts on protein-structure determination by NMR. J. Mag. Reson. Ser. B, 106(1), 92–96 (1995)CrossRefGoogle Scholar
  38. 38.
    Kuszewski, J., Gronenborn, A.M., Clore, G.M.: Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 5(6), 1067–1080 (1996)CrossRefGoogle Scholar
  39. 39.
    Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune Algorithm for the Discretizable Molecular Distance Geometry Problem with Inexact Distances. to appear in J. Global Optim. (2012) DOI: 10.1007/s10898-011-9799-6Google Scholar
  40. 40.
    Liang, B.Y., Bushweller, J.H., Tamm, L.K.: Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 128(13), 4389–4397 (2006)CrossRefGoogle Scholar
  41. 41.
    Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Lipsitz, R.S., Tjandra, N.: Carbonyl CSA restraints from solution NMR for protein structure refinement. J. Am. Chem. Soc. 123(44), 11065–11066 (2001)CrossRefGoogle Scholar
  43. 43.
    Lipsitz, R.S., Tjandra, N.: N-15 chemical shift anisotropy in protein structure refinement and comparison with NH residual dipolar couplings. J. Mag. Reson. 164(1), 171–176 (2003)CrossRefGoogle Scholar
  44. 44.
    Lipsitz, R.S., Tjandra, N.: Residual dipolar couplings in NMR structure analysis. Ann. Rev. Biophys. Biomol. Struct. 33, 387–413 (2004)CrossRefGoogle Scholar
  45. 45.
    Linge, J.P., Nilges, M.: Influence of non-bonded parameters on the quality of NMR structures: A new force field for NMR structure calculation. J. Biomol. NMR 13(1), 51–59 (1999)CrossRefGoogle Scholar
  46. 46.
    Linge, J.P., Habeck, M., Rieping, W., Nilges, M.: Correction of spin diffusion during iterative automated NOE assignment. J. Mag. Reson. 167(2), 334–342 (2004)CrossRefGoogle Scholar
  47. 47.
    Lopez-Mendez, B., Guntert, P.: Automated protein structure determination from NMR spectra. J. Am. Chem. Soc. 128(40), 13112–13122 (2006)CrossRefGoogle Scholar
  48. 48.
    Lovell, S.C., Davis, I.W., Arendall, W.B., de Bakker, P.I.W., Word, J.M., Prisant, M.G., Richardson, J.S., Richardson, D.C.: Structure validation by C α geometry: Φ, Ψ and C β deviation. Protein. Struct. Funct. Genet. 50(3), 437–450 (2003)CrossRefGoogle Scholar
  49. 49.
    Meiler, J., Blomberg, N., Nilges, M., Griesinger, C.: A new approach for applying residual dipolar couplings as restraints in structure elucidation. J. Biomol. NMR 16(3), 245–252 (2000)CrossRefGoogle Scholar
  50. 50.
    Nilges, M., Clore, G.M., Gronenborn, A.M.: Determination of 3-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms – circumventing problems associated with folding. FEBS Lett. 239(1), 129–136 (1988)CrossRefGoogle Scholar
  51. 51.
    Nilges, M., Clore, G.M., Gronenborn, A.M.: Determination of 3-dimensional structures of proteins from interproton distance data by hybrid distance geometry – Dynamical simulated annealing calculations. FEBS Lett. 229(2), 317–324 (1988)CrossRefGoogle Scholar
  52. 52.
    Nilges, M., Gronenborn, A.M., Brünger, A.T., Clore, G.M.: Determination of 3-dimensional structures of proteins by simulated annealing with interproton distance restraints – Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor-2. Protein Eng. 2(1), 27–38 (1988)CrossRefGoogle Scholar
  53. 53.
    Nucci, P., Nogueira, L.T., Lavor, C.: Determining protein backbone from H and H-alpha short interatomic distances, In: Mastorakis, N.E., Mladenov, Demiralp, M, V, Bojkovic Z (eds.) WSEAS Press, Athens, Advances in Biology, Bioengineering and Environment, 43–48 (2010)Google Scholar
  54. 54.
    Overhauser, A.W.: Polarization of nuclei in metals. Phys. Rev.92(2), 411–415 (1953)MATHCrossRefGoogle Scholar
  55. 55.
    Pardi, A., Billeter, M., Wüthrich, K.: Calibration of the angular-dependence of the amide proton-C-alpha proton coupling-constants, 3JHN-alpha, in a globular protein – Use of 3JHN-alpha for identification of helical secondary structure. J. Mol. Biol. 180(3), 741–751 (1984)CrossRefGoogle Scholar
  56. 56.
    Pauling, L., Corey, R.B.: 2 hydrogen-bonded spiral configurations of the polypeptide chain. J. Am. Chem. Soc. 72(11), 5349–5349 (1950)CrossRefGoogle Scholar
  57. 57.
    Pauling, L., Corey, R.B.: The structure of synthetic polypeptides. Proc. Nat. Acad. Sci. Unit. States Am. 37(5), 241–250 (1951)CrossRefGoogle Scholar
  58. 58.
    Pauling, L., Corey, R.B.: Configuration of polypeptide chains. Nature 168, 550–551 (1951)CrossRefGoogle Scholar
  59. 59.
    Pauling, L., Corey, R.B., Branson, H.R.: The structure of proteins – 2 hydrogen-bonded helical configurations of the polypeptide chain. Proc. Nat. Acad. Sci. Unit. States Am. 37, 205–211 (1951)CrossRefGoogle Scholar
  60. 60.
    Pinheiro, A.S., Amorim, G.C., Netto, L.E., Almeida, F.C., Valente, A.P.: NMR solution structure of the reduced form of thioredoxin 1 from Sacharomyces cerevisiae. Protein. Struct. Funct. Bioinformatics 70(2), 584–587 (2008)CrossRefGoogle Scholar
  61. 61.
    Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V.: Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7(1), 95–99 (1963)CrossRefGoogle Scholar
  62. 62.
    Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T.E., Nilges, M.: ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23(3), 381–382 (2007)CrossRefGoogle Scholar
  63. 63.
    Sass, H.J., Musco, G., Stahl, S.J., Wingfield, P.T., Grzesiek, S.: An easy way to include weak alignment constraints into NMR structure calculations. J. Biomol. NMR 21(3), 275–280 (2001)CrossRefGoogle Scholar
  64. 64.
    Schwieters, C.D., Kuszewski, J.J., Clore, G.M.: Using Xplor-NIH for NMR molecular structure determination. Progr. Nucl. Mag. Reson. Spectros. 48(1), 47–62 (2006)CrossRefGoogle Scholar
  65. 65.
    Scott, W.R.P., Hürger, Ph.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., van Gunsteren, P.K.W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)CrossRefGoogle Scholar
  66. 66.
    Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44(4), 213–223 (2009)CrossRefGoogle Scholar
  67. 67.
    Smith, G.M., Veber, D.F.: Computer-aided, systematic search of peptide conformations constrained by NMR data. Biochem. Biophys. Res. Commun. 134(2), 907–914 (1986)CrossRefGoogle Scholar
  68. 68.
    Spronk, C.A.E.M., Linge, J.P., Hilbers, C.W., Vuister, G.W.: Improving the quality of protein structures derived by NMR spectroscopy. J. Biomol. NMR 22(3), 281–289 (2002)CrossRefGoogle Scholar
  69. 69.
    Standley, D.M., Eyrich, V.A., Felts, A.K., Friesner, R.A., McDermott, A.E.: A branch and bound algorithm for protein structure refinement from sparse NMR data sets. J. Mol. Biol. 285(4), 1691–1710 (1999)CrossRefGoogle Scholar
  70. 70.
    Tjandra, N., Bax, A.: Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340), 1111–1114 (1997)CrossRefGoogle Scholar
  71. 71.
    Tjandra, N., Marquardt, J., Clore, G.M.: Direct refinement against proton-proton dipolar couplings in NMR structure determination of macromolecules. J. Mag. Reson. 142(2), 393–396 (2000)CrossRefGoogle Scholar
  72. 72.
    Volk, J., Herrmann, T., Wüthrich, K.: Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J. Biomol. NMR 41(3), 127–138 (2008)CrossRefGoogle Scholar
  73. 73.
    Wagner, G., Braun, W., Havel, H.T., Schaumann, T., Go, N., Wüthrich, K.: Protein structures in solution by Nuclear-Magnetic-Resonance and Distance Geometry – the polypeptide fold of the basic pancreatic trypsin-inhibitor determined using 2 different algorithms, Disgeo and Disman. J. Mol. Biol. 196(3), 611–639 (1987)CrossRefGoogle Scholar
  74. 74.
    Wu, Z.R., Tjandra, N., Bax, A.: P-31 chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals. J. Am. Chem. Soc. 123(15), 3617–3618 (2001)CrossRefGoogle Scholar
  75. 75.
    Wüthrich, K.W.T.: NMR of Proteins and Nucleic Acids, vol. 1. Wiley-Interscience, New York (1986)Google Scholar
  76. 76.
    Wüthrich, K., Billeter, M., Braun, W.: Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J. Mol. Biol. 180(3), 715–740 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fabio C. L. Almeida
    • 1
  • Adolfo H. Moraes
    • 1
  • Francisco Gomes-Neto
    • 1
  1. 1.National Center of Nuclear Magnetic Resonance,Institute of Medical BiochemistryFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations