Skip to main content

Global Optimization for Atomic Cluster Distance Geometry Problems

  • Chapter
  • First Online:
Distance Geometry
  • 1947 Accesses

Abstract

This chapter is devoted to a survey of global optimization methods suitable for the reconstruction of the three-dimensional conformation of atomic clusters based on the possibly noisy and imprecise knowledge of a sparse subset of pairwise distances. The problem we address is that of finding the geometry of a three-dimensional object without making use of any structural knowledge, but relying only on a subset of measured pairwise distances. The techniques we present are based on global optimization methods applied to different formulations of the problem. The methods are based on the use of standard local searches within a global optimization (GO) method which is based on local perturbation moves. Different definitions of these perturbations lead to different methods, whose performances are compared. Both sequential and population-based variants of the methods are reviewed in this chapter and some relevant numerical results are presented. From the evidence reported, it can be concluded that, when no additional information is available, such as, e.g., information about a linear order which allows for using a build-up technique, the methods proposed in this chapter represent an effective tool for difficult distance geometry problems (DGPs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at www.mcs.anl.gov/~more/dgsol.

  2. 2.

    Note that, from the set of known distances, it is possible to guarantee that a box of edge size equal to 100 is able to enclose all the molecules for the tested instances.

References

  1. Addis, B., Locatelli, M., Schoen, F.: Efficiently packing unequal disks in a circle. Oper. Res. Lett. 36, 37–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  3. Biswas, P.,  Toh, K.-C., Ye, Y.: A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30 1251–1277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassioli, A., Locatelli, M., Schoen, F.: Dissimilarity measures for population-based global optimization algorithms. Comput. Optim. Appl. 45, 257–281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, L., Feng, Y., Yang, J., Yang, J.: Funnel hopping: Searching the cluster potential energy surface over the funnels. J. Chem. Phys. 130(21), 214112 (2009)

    Article  Google Scholar 

  6. Crippen, G., Havel, T.: Distance Geometry and Molecular Conformation. Wiley (1988)

    Google Scholar 

  7. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global. Optim. 26, 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Doye, J.P.K., Leary, R.H., Locatelli, M., Schoen, F.: The global optimization of Morse clusters by potential transformations. INFORMS Journal on Computing 16, 371–379 (2004)

    Article  MATH  Google Scholar 

  9. Grosso, A., Locatelli, M., Schoen, F.: A population based approach for hard global optimization problems based on dissimilarity measures. Math. Program. 110, 373–404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grosso, A., Locatelli, M., Schoen, F.: An experimental analysis of population based approach for global optimization. Comput. Optim. Appl. 38, 351–370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global optimization algorithms. Comput. Optim. Appl. 43, 23–37 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hendrickson, B.A.: The molecular problem: determining conformation from pairwise distances. Ph.D. Thesis, Cornell University (1991)

    Google Scholar 

  13. Lai, X., Xu, R., Huang, W.: Prediction of the lowest energy configuration for Lennard-Jones clusters. Sci. China Chem. 54, 985–991 (2011)

    Article  Google Scholar 

  14. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Article  MathSciNet  Google Scholar 

  15. Leary, R.H.: Global optima of Lennard-Jones clusters. J. Global. Optim. 11, 35–53 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leary, R.H.: Global optimization on funneling landscapes. J. Global. Optim. 18, 367–383, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, D.C., Nocedal, J.: On the Limited Memory Method for Large Scale Optimization. Math. Program. B45, 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  18. Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimization: Lennard-Jones clusters. Comput. Optim. Appl. 26, 173–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Locatelli, M.: On the multilevel structure of global optimization problems. Comput. Optim. Appl. 30, 5–22 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lourenço, H.R., Martin, O., Stützle, T.: Iterated Local Search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer (2003)

    Google Scholar 

  21. Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim.7, 814–836 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moré, J., Wu, Z.: Distance geometry optimization for protein structures. J. Global. Optim. 15, 219–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saxe, J.B.: Embeddability of graphs in k − space is strongly NP-hard. In: Proceedings of the 17th Allerton Conference in Communication, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  24. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A101, 5111–5116 (1997)

    Article  Google Scholar 

  25. Wales, D.J.: Energy Landscapes with Applications to Clusters, Biomolecules and Glasses. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Schoen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Locatelli, M., Schoen, F. (2013). Global Optimization for Atomic Cluster Distance Geometry Problems. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_11

Download citation

Publish with us

Policies and ethics