Advertisement

ASAP: An Eigenvector Synchronization Algorithm for the Graph Realization Problem

Chapter

Abstract

We review a recent algorithm for localization of points in Euclidean space from a sparse and noisy subset of their pairwise distances. Our approach starts by extracting and embedding uniquely realizable subsets of neighboring sensors called patches. In the noise-free case, each patch agrees with its global positioning up to an unknown rigid motion of translation, rotation, and possibly reflection. The reflections and rotations are estimated using the recently developed eigenvector synchronization algorithm, while the translations are estimated by solving an overdetermined linear system. In other words, to every patch, there corresponds an element of the Euclidean group Euc(3) of rigid transformations in \({\mathbb{R}}^{3}\), and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. The algorithm is scalable as the number of nodes increases, and can be implemented in a distributed fashion. Extensive numerical experiments show that it compares favorably to other existing algorithms in terms of robustness to noise, sparse connectivity and running time.

Keywords

Graph realization problem Sensor networks Molecule problem Distance geometry Eigenvectors Synchronization Rigidity theory Spectral graph theory 

References

  1. 1.
    Akyildiz, I.F., Su, W., Cayirci, Y.S.E.: Wireless sensor networks: A survey. Comput. Network. 38, 393–422 (2002)Google Scholar
  2. 2.
    Anderson, B.D.O., Belhumeur, P.N., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W.: Graphical properties of easily localizable networks. Wireless Network. 15, 177–191 (2009)Google Scholar
  3. 3.
    Arie-Nachimson, M., Basri, R., Singer, A.: in preparationGoogle Scholar
  4. 4.
    Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R., Anderson, B.D.O., Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mobile. Comput. 5, 1663–1678 (2006)Google Scholar
  5. 5.
    Aspnes, J., Goldenberg, D.K., Yang, Y.R.: On the computational complexity of sensor network localization. In: Proceedings of Algorithmic Aspects of Wireless Sensor Networks: First International Workshop (ALGOSENSORS), Lecture Notes in Computer Science, pp. 32–44. Springer (2004)Google Scholar
  6. 6.
    Bandeira, A.S., Singer, A., Spielman, D.A.: A cheeger inequality for the graph connection laplacian, arXiv.12043873Google Scholar
  7. 7.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)Google Scholar
  8. 8.
    Biswas, P., Aghajan, H., Ye, Y.: Semidefinite programming algorithms for sensor network localization using angle of arrival information. In: Proceedings of the 39th Annual Asilomar Conference on Signals, Systems, and Computers, pp. 220–224 (2005)Google Scholar
  9. 9.
    Biswas, P., Lian, T.C., Wang, T.C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Transactions on Sensor Networks 2, 188–220 (2006) aGoogle Scholar
  10. 10.
    Biswas, P., Liang, T., Toh, K., Ye, Y., Wang, T.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Transactions on Automation Science and Engineering 3, 360–371 (2006) bGoogle Scholar
  11. 11.
    Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: ACM Conference Proceedings, Third International Symposium on Information Processing in Sensor Networks, pp. 46–54. New York (2004)Google Scholar
  12. 12.
    Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)Google Scholar
  13. 13.
    Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21, 5–30 (2006)Google Scholar
  14. 14.
    Connelly, R., Whiteley, W.J.: Global rigidity: The effect of coning. Discrete Comput. Geom. 43, 717–735 (2010)Google Scholar
  15. 15.
    Cox, T.F., Cox, M.A.A.: Multidimensional scaling. Monographs on Statistics and Applied Probability 88. Chapman & Hall/CRC, Boca Raton (2001)Google Scholar
  16. 16.
    Cucuringu, M., Lipman, Y., Singer, A.: Sensor network localization by eigenvector synchronization over the Euclidean group. ACM Tran. Sen. Net. 8(3), 1–42 (2011)Google Scholar
  17. 17.
    Cucuringu, M., Singer, A., Cowburn, D.: Synchronization, graph rigidity and the molecule problem. submitted (2011)Google Scholar
  18. 18.
    De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Barra, J.R., Brodeau, F., Romierand, G., Cutsem, B.V. (eds.) Recent Developments in Statistics, pp. 133–146. North Holland Publishing Company, Amsterdam (1977)Google Scholar
  19. 19.
    Frank, J.: Three-dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State, 2nd edn. Oxford University Press, USA (2006)Google Scholar
  20. 20.
    Giridhar, A., Kumar, P.R.: Distributed clock synchronization over wireless networks: algorithms and analysis. In: IEEE Conference Proceedings, 45th IEEE Conference on Decision and Control, pp. 4915–4920 (2006)Google Scholar
  21. 21.
    Gotsman, C., Koren, Y.: Distributed graph layout for sensor networks. In: Proceedings of the International Symposium on Graph Drawing, pp. 273–284 (2004)Google Scholar
  22. 22.
    Hadani, R., Singer, Representation theoretic patterns in three dimensional Cryo-Electron Microscopy I – the intrinsic reconstitution algorithm, Ann. Math. 174(2), pp. 1219–1241 (2011).Google Scholar
  23. 23.
    Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21, 65–84 (1992)Google Scholar
  24. 24.
    Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)Google Scholar
  25. 25.
    Horn, B., Hilden, H., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. A 5, 1127–1135 (1988)Google Scholar
  26. 26.
    Javanmard, A., Montanari, A.: Localization from incomplete noisy distance measurements, submittedGoogle Scholar
  27. 27.
    Ji, X., Zha, H.: Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In: Proceedings of INFOCOM, vol. 4, pp. 2652–2661 (2004)Google Scholar
  28. 28.
    Karp, R., Elson, J., Estrin, D., Shenker, S.: Optimal and global time synchronization in sensornets. Tech. Report, Center for Embedded Networked Sensing, University of California, Los Angeles (2003)Google Scholar
  29. 29.
    Koren, Y., Gotsman, C., Ben-Chen, M.: PATCHWORK: Efficient localization for sensor networks by distributed global optimization. Tech. Report (2005)Google Scholar
  30. 30.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. Tech. Report, arXiv.12050349 (2012)Google Scholar
  31. 31.
    Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: From continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2011)Google Scholar
  32. 32.
    Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy range measurements. In: Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems, pp. 50–61 (2004)Google Scholar
  33. 33.
    Ozyesil, O., Singer, A.: Synchronization in non-compact groups: Special euclidean group case, submittedGoogle Scholar
  34. 34.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290 2323–2326 (2000)Google Scholar
  35. 35.
    Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  36. 36.
    Shang, Y., Ruml, W.: Improved MDS-based localization. In: Proceedings of IEEE INFOCOM, vol. 23, pp. 2640–2651. Hong Kong, China (2004)Google Scholar
  37. 37.
    Singer, A.: A remark on global positioning from local distances. Proc. Natl. Acad. Sci. 105, 9507–9511 (2008)Google Scholar
  38. 38.
    Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Applied and Computational Harmonic Analysis 30, 20–36 (2011)Google Scholar
  39. 39.
    Singer, A., Shkolnisky, Three-Dimensional Structure Determination from Common Lines in Cryo-EM by Eigenvectors and Semidefinite Programming. SIAM J. Imag. Sci. 4(2), pp. 543–572 (2011).Google Scholar
  40. 40.
    Singer, A., Wu, H.-T.: Vector diffusion maps and the connection Laplacian, Commun. Pur. Appl. Math. (CPAM), 65(8), pp. 1067–1144 (2012)Google Scholar
  41. 41.
    Singer, A., Zhao, Z., Shkolnisky, Y., Hadani, R.: Viewing angle classification of cryo-electron microscopy images using eigenvectors. SIAM J. Imag. Sci. 4, 543–572 (2011)Google Scholar
  42. 42.
     So, A.M.C.: A semidefinite programming approach to the graph realization problem: theory, applications and extensions. Ph.D. Thesis (2007)Google Scholar
  43. 43.
     So, A.M.C., Ye, Y.: Theory of semidefinite programming for sensor network localization. In: Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete Algorithm (SODA), pp. 405–414 (2005)Google Scholar
  44. 44.
    Toh, K., Biswas, P., Ye, Y.: SNLSDP version 0 – a MATLAB software for sensor network localization, October 2008 http://www.math.nus.edu.sg/ mattohkc/SNLSDP.html Google Scholar
  45. 45.
    Tubaishat, M., Madria, S.: Sensor networks: an overview. IEEE Potentials 22, 20–23 (2002)Google Scholar
  46. 46.
    Weinberger, K.Q., Sha, F., Zhu, Q., Saul, L.K.: Graph laplacian regularization for large-scale semidefinite programming. In: Schoolkopf, B., Platt, J., Hofmann, T. (eds.) Advances in neural information processing systems (NIPS), MIT Press, Cambridge (2007)Google Scholar
  47. 47.
    Yemini, Y.: Some theoretical aspects of location-location problems. In: Proceedings of the IEEE Annual Symposium on Foundations of Computer Science, pp. 1–8 (1979)Google Scholar
  48. 48.
    Zhang, L., Liu, L., Gotsman, C., Gortler, S.J.: An As-Rigid-As-Possible approach to sensor network localization. ACM Tran. Sen. Net. 6(4), 1–21 (2010)Google Scholar
  49. 49.
    Zhu, Z., So, A.M.C., Ye, Y.: Universal rigidity: towards accurate and efficient localization of wireless networks. In: Proceedings of the IEEE INFOCOM, pp. 1–9 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.PACMPrinceton UniversityPrincetonUSA

Personalised recommendations