Skip to main content

Abstract

Radiotherapy is a very effective treatment for achieving local tumor control in breast cancer. However, intrinsic tumor cell radioresistance is a significant clinical problem that limits the results of the treatment. Chemotherapeutics that could specifically sensitize tumors to radiation would greatly increase the ability to deliver higher doses while limiting radiation damage to surrounding normal tissue, but efforts to develop clinically useful tumor radiosensitizers have had limited success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall EJ. Radiobiology for the radiologist. 5th ed. New York: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  2. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27:247–54.

    Article  PubMed  CAS  Google Scholar 

  3. Helleday T, Lo J, van Gent DC, et al. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst). 2007;6:923–35.

    Article  CAS  Google Scholar 

  4. van Gent DC, van der Burg M. Non-homologous end-joining, a sticky affair. Oncogene. 2007;26:7731–40.

    Article  PubMed  Google Scholar 

  5. Jorgensen TJ. Enhancing radiosensitivity. Cancer Biol Ther. 2000;8(8):665–70.

    Google Scholar 

  6. Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA doublestrand breaks by non-homologous end-joining. Biochem J. 2009;417:639–50.

    Article  PubMed  CAS  Google Scholar 

  7. Hakem R. DNA-damage repair; the good, the bad and the ugly. EMBO J. 2008;27:589–605.

    Article  PubMed  CAS  Google Scholar 

  8. Liang K, Jin W, Knuefermann C, Schmidt M, et al. Targeting the phosphatidylinositol 3-kinase/Akt pathway for enhancing breast cancer cells to radiotherapy. Mol Cancer Ther. 2003;2(4):353–60.

    PubMed  CAS  Google Scholar 

  9. Wollman R, Yahalom J, Maxy R, et al. Effect of epidermal growth factor on the growth and radiation sensitivity of human breast cancer cells in vitro. Int J Radiat Oncol. 1994;30:91–8.

    Article  CAS  Google Scholar 

  10. Zhou H, Kim YS, Peletier A, et al. Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. Int J Radiat Oncol Biol Phys. 2004;58:344–52.

    Article  PubMed  CAS  Google Scholar 

  11. Sambade MJ, Kimple RJ, Camp JT, et al. Lapatinib in combination with radiation diminishes tumor regrowth in HER2+ and basal-like/EGFR+ breast tumor xenografts. Int J Radiat Oncol Biol Phys. 2010;77(2):575–81.

    Article  PubMed  CAS  Google Scholar 

  12. Turner BC, Haffty BG, Narayanan L, et al. Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res. 1997;57(15):3079–83.

    PubMed  CAS  Google Scholar 

  13. Bartucci M, Morelli C, Mauro L, et al. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res. 2001;61:6747–54.

    PubMed  CAS  Google Scholar 

  14. Iwamoto KS, Barber CL. Radiation-induced posttranscriptional control of M6P/IGF2r expression in breast cancer cell lines. Mol Carcinog. 2007;46(7):497–502.

    Article  PubMed  CAS  Google Scholar 

  15. Manders P, Sweep FC, Tjan-Heijnen VC, et al. Vascular endothelial growth factor independently predicts the efficacy of postoperative radiotherapy in nodenegative breast cancer patients. Clin Cancer Res. 2003;9:6363–70.

    PubMed  CAS  Google Scholar 

  16. Linderholm B, Tavelin B, Grankvist K, et al. Does vascular endothelial growth factor (VEGF) predict local relapse and survival in radiotherapy-treated node-negative breast cancer? Br J Cancer. 1999;81:727–32.

    Article  PubMed  CAS  Google Scholar 

  17. Labidi SI, Bachelot T, Ray-Coquard I, et al. Bevacizumab and paclitaxel for breast cancer patients with central nervous system metastases: a case series. Clin Breast Cancer. 2009;9(2):118–21.

    Article  PubMed  CAS  Google Scholar 

  18. Abbott DW, Thompson ME, Robinson-Benion C, et al. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem. 1999;274:18808–12.

    Article  PubMed  CAS  Google Scholar 

  19. Baeyens A, Thierens H, Claes K, et al. Chromosomal radiosensitivity in BRCA1 and BRCA2 mutation carriers. Int J Radiat Biol. 2004;80(10):745–56.

    Article  PubMed  CAS  Google Scholar 

  20. Nieuwenhuis B, Van Assen-Bolt AJ, Van Waarde-Verhagen MA, et al. BRCA1 and BRCA2 heterozygosity and repair of X-ray-induced DNA damage. Int J Radiat Biol. 2002;78(4):285–95.

    Article  PubMed  CAS  Google Scholar 

  21. Coleman CN. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2. Acta Oncol. 1999;38 Suppl 13:55–9.

    Article  PubMed  Google Scholar 

  22. Ernestos B, Nikolaos P, Koulis G, et al. Increased chromosomal radiosensitivity in women carrying BRCA1/BRCA2 mutations assessed with the G2 assay. Int J Radiat Oncol Biol Phys. 2010;76(4):1199–205.

    Article  PubMed  CAS  Google Scholar 

  23. Marchetti P, Cannita K, Ricevuto E, et al. Prognostic value of p53 molecular status in high-risk primary breast cancer. Ann Oncol. 2003;14(5):704–8.

    Article  PubMed  CAS  Google Scholar 

  24. Mayer C, Popanda O, Greve B, et al. A radiation-induced gene expression signature as a tool to predict acute radiotherapy induced adverse side effects. Cancer Lett. 2011;302(1):20–8.

    Article  PubMed  CAS  Google Scholar 

  25. Slijepcevic P. Is there a link between telomere maintenance and radiosensitivity? Radiat Res. 2004;161(1):82–6.

    Article  PubMed  CAS  Google Scholar 

  26. Zhong YH, Liao ZK, Zhou FX, et al. Telomere length inversely correlates with radiosensitivity in human carcinoma cells with the same tissue background. Biochem Biophys Res Commun. 2008;367(1):84–9.

    Article  PubMed  CAS  Google Scholar 

  27. Iwasaki T, Robertson N, Tsigani T, et al. Lymphocyte telomere length correlates with in vitro radiosensitivity in breast cancer cases but is not predictive of acute normal tissue reactions to radiotherapy. Int J Radiat Biol. 2008;84(4):277–84.

    Article  PubMed  CAS  Google Scholar 

  28. Barwell J, Pangon L, Georgiou A, et al. Is telomere length in peripheral blood lymphocytes correlated with cancer susceptibility or radiosensitivity? Br J Cancer. 2007;97(12):1696–700.

    Article  PubMed  CAS  Google Scholar 

  29. Al-Ejeh F, Smart CE, Morrison BJ, et al. Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis. 2011;32(5):650–8.

    Article  PubMed  CAS  Google Scholar 

  30. Lindeman GJ, Visvader JE. Insights into the cell of origin in breast cancer and breast cancer stem cells. Asia Pac J Clin Oncol. 2010;6:89–97.

    Article  PubMed  Google Scholar 

  31. Phillips TM, Mc Bride WH, Pajonk F. The response of CD24(_/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.

    Article  PubMed  Google Scholar 

  32. Woodward WA, Chen MS, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA. 2007;104:618–23.

    Article  PubMed  CAS  Google Scholar 

  33. Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.

    Article  PubMed  CAS  Google Scholar 

  34. Han JS, Crowe DL. Tumor initiating cancer stem cells from human breast cancer cell lines. Int J Oncol. 2009;34:1449–53.

    PubMed  CAS  Google Scholar 

  35. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741–51.

    Article  PubMed  CAS  Google Scholar 

  36. Karimi-Busheri F, Rasouli NA, Mackey JY, et al. Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res. 2010;12:R31.

    Article  PubMed  Google Scholar 

  37. Harper LJ, Costena D, Gammon L, et al. Normal and malignant epithelial cells with stemlike properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer. 2010;10(166):2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serra Kamer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kamer, S., Atasoy, B.M. (2013). Mechanisms of Resistance to Radiation. In: Haydaroglu, A., Ozyigit, G. (eds) Principles and Practice of Modern Radiotherapy Techniques in Breast Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5116-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5116-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5115-0

  • Online ISBN: 978-1-4614-5116-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics