The Organs at Risk and Radiation Tolerance Doses

  • Senem Demirci Alanyalı
  • Naim Ceylan
  • Ayfer Haydaroglu


During the last two decades, early diagnosis and better treatment options have improved the survival rates of breast cancer patients [1]. Radiotherapy (RT) is an essential component of the treatment of patients with early and locally advanced disease and has been shown to reduce local recurrence risk by approximately 20% and breast cancer mortality risk by 5% [2]. However, RT-induced toxicities may manifest from months to decades after treatment and may be related to severe morbidity and mortality. Older RT techniques are particularly associated with an excess risk of non-breast cancer mortality, which was mainly from heart disease [2]. The goal of modern RT techniques is to improve the therapeutic ratio by increasing tumor control and decreasing toxicity.


Brachial Plexus Contralateral Breast Radiation Therapy Oncology Group Radiation Pneumonitis Mean Lung Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buzdar A, Hunt K, Buchholz TA, et al. Improving survival of patients with breast cancer over the past 6 decades: The University of Texas M. D. Anderson Cancer Center experience. In: 2010 Breast Cancer Symposium, October 1–3, 2010 Washington, DC. Abstract no:176.Google Scholar
  2. 2.
    Early Breast Cancer Trialists Collaborative Group (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366:2087–106.Google Scholar
  3. 3.
    Li XA, Tai A, Arthur DW, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys. 2009;73:944–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.PubMedCrossRefGoogle Scholar
  5. 5.
  6. 6.
    Marks LB, Bentzen SM, Deasy JO, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76:S70–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Gagliardi G, Constine LS, Moiseenko V, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76:S77–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Werner-Wasik M, Yorke E, Deasy J, et al. Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys. 2010;76:S86–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76:S42–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 2011;81:1442–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Halperin EC, Perez CA, Brady LW. Principles and practice of radiation oncology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 321–50.Google Scholar
  12. 12.
    Marks LB, Yu X, Vujaskovic Z, et al. Radiation-induced lung injury. Semin Radiat Oncol. 2003;13:333–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45:323–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Koh ES, Sun A, Tran TH, et al. Clinical dose-volume histogram analysis in predicting radiation pneumonitis in Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 2006;66:223–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Lind PA, Wennberg B, Gagliardi G, et al. Pulmonary complications following different radiotherapy techniques for breast cancer, and the association to irradiated lung volume and dose. Breast Cancer Res Treat. 2001;68:199–210.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsougos I, Mavroidis P, Rajala J, et al. Evaluation of dose–response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy. Phys Med Biol. 2005;50:3535–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Jaen J, Vazquez G, Alonso E, et al. Changes in pulmonary function after incidental lung irradiation for breast cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2006;65:1381–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsougos I, Mavroidis P, Theodorou K, et al. Clinical validation of the LKB model and parameter sets for predicting radiation-induced pneumonitis from breast cancer radiotherapy. Phys Med Biol. 2006;51:L1–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Blom-Goldman U, Svane G, Wennberg B, et al. Quantitative assessment of lung density changes after 3-D radiotherapy for breast cancer. Acta Oncol. 2007;46:187–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Kahan Z, Csenki M, Varga Z, et al. The risk of early and late lung sequelae after conformal radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2007;68:673–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Krengli M, Sacco M, Loi G, et al. Pulmonary changes after radiotherapy for conservative treatment of breast cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2008;70:1460–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Bortfeld T, Schmidt-Ulrich R, De Neve W, Wazer DE, editors. Image-guided IMRT. New York: Springer; 2006. p. 317–81.Google Scholar
  23. 23.
    Jagsi R, Moran J, Marsh R, et al. Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1594–603.PubMedCrossRefGoogle Scholar
  24. 24.
    Blom Goldman U, Wennberg B, Svane G, et al. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol. 2010;5:99.PubMedCrossRefGoogle Scholar
  25. 25.
    Feng M, Moran JM, Koelling T, et al. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79:10–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Martel MK, Sahijdak WM, Ten Haken RK, et al. Fraction size and dose parameters related to the incidence of pericardial effusions. Int J Radiat Oncol Biol Phys. 1998;40:155–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Demirci S, Nam J, Hubbs JL, et al. Radiation-induced cardiac toxicity after therapy for breast cancer: interaction between treatment era and follow-up duration. Int J Radiat Oncol Biol Phys. 2009;73:980–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Hudson F, Coulshed D, D’Souza E, Baker C. Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review. J Med Imaging Radiat Oncol. 2010;54:53–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Hall WH, Guiou M, Lee NY, et al. Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2008;72:1362–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Schierle C, Winograd JM. Radiation-induced brachial plexopathy: review. Complication without a cure. J Reconstr Microsurg. 2004;20:149–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Bajrovic A, Rades D, Fehlauer F, et al. Is there a life-long risk of brachial plexopathy after radiotherapy of supraclavicular lymph nodes in breast cancer patients? Radiother Oncol. 2004;71:297–301.PubMedCrossRefGoogle Scholar
  32. 32.
    Platteaux N, Dirix P, Hermans R, Nuyts S. Brachial plexopathy after chemoradiotherapy for head and neck squamous cell carcinoma. Strahlenther Onkol. 2010;186:517–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Pierce SM, Recht A, Lingos TI, et al. Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys. 1992;23:915–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Fowble BL, Solin LJ, Schultz DJ, Goodman RL. Ten year results of conservative surgery and irradiation for stage I and II breast cancer. Int J Radiat Oncol Biol Phys. 1991;21:269–77.PubMedCrossRefGoogle Scholar
  35. 35.
    Kirova YM. Recent advances in breast cancer radiotherapy: evolution or revolution, or how to decrease cardiac toxicity? World J Radiol. 2010;2:103–18.PubMedCrossRefGoogle Scholar
  36. 36.
    Cumberlin RL, Dritschilo A, Mossman KL. Carcinogenic effects of scattered dose associated with radiation therapy. Int J Radiat Oncol Biol Phys. 1989;17:623–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Boice JD, Harvey EB, Blettner M, et al. Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992;326:781–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Hong L, Hunt M, Chui C, et al. Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys. 1999;44:1155–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Amdur RJ, Mazzaferri EL. Essentials of thyroid cancer management, basic thyroid anatomy. 2005. p. 3–6.Google Scholar
  40. 40.
    Sklar C, Whitton J, Mertens A, et al. Abnormalities of the thyroid in survivors of Hodgkin’s disease: data from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2000;85:3227–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Mercado G, Adelstein DJ, Saxton JP, et al. Hypothyroidism: a frequent event after radiotherapy and after radiotherapy with chemotherapy for patients with head and neck carcinoma. Cancer. 2001;92:2892–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Johansen S, Reinertsen KV, Knutstad K, et al. Dose distribution in the thyroid gland following radiation therapy of breast cancer—a retrospective study. Radiat Oncol. 2011;6:68.PubMedCrossRefGoogle Scholar
  43. 43.
    Dogan N, Cuttino L, Lloyd R, et al. Optimized dose coverage of regional lymph nodes in breast cancer: the role of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68:1238–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Saibishkumar EP, MacKenzie MA, Severin D, et al. Skin-sparing radiation using intensity-modulated radiotherapy after conservative surgery in early-stage breast cancer: a planning study. Int J Radiat Oncol Biol Phys. 2008;70:485–91.PubMedCrossRefGoogle Scholar
  45. 45.
    Pignol JP, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol. 2008;26:2085–92.PubMedCrossRefGoogle Scholar
  46. 46.
    McDonald MW, Godette KD, Butker EK, et al. Long-term outcomes of IMRT for breast cancer: a single-institution cohort analysis. Int J Radiat Oncol Biol Phys. 2008;72:1031–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Bhatnagar AK, Brandner E, Sonnik D, et al. Intensity modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation. Breast Cancer Res Treat. 2006;96:41–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Williams TM, Moran JM, Hsu SH, et al. Contralateral breast dose after whole-breast irradiation: an analysis by treatment technique. Int J Radiat Oncol Biol Phys. 2012;82:2079–85.PubMedCrossRefGoogle Scholar
  49. 49.
    Beckham WA, Popescu CC, Patenaude VV, et al. Is multibeam IMRT better than standard treatment for patients with left-sided breast cancer? Int J Radiat Oncol Biol Phys. 2007;69(3):918–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Senem Demirci Alanyalı
    • 1
  • Naim Ceylan
    • 1
  • Ayfer Haydaroglu
    • 1
  1. 1.Department of Radiation OncologyEge UniversityBornovaTurkey

Personalised recommendations