The Role of GW182 Proteins in miRNA-Mediated Gene Silencing

  • Joerg E. Braun
  • Eric Huntzinger
  • Elisa Izaurralde
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 768)

Abstract

GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2–PAN3 and CCR4–NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets.

Keywords

Neuropathy Glutamine Tryptophan Asparagine 

Notes

Acknowledgments

The research in this laboratory is supported by the Max Planck Society and by grants from the Deutsche Forschungsgemeinschaft (DFG, FOR855 and the Gottfried Wilhelm Leibniz Program awarded to E.I.).

References

  1. Baillat D, Shiekhattar R (2009) Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 29:4144–4155PubMedCrossRefGoogle Scholar
  2. Bartel PD (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCrossRefGoogle Scholar
  3. Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in Zebrafish. Science 336:233–237PubMedCrossRefGoogle Scholar
  4. Behm-Ansmant I, Rehwinkel J, Doerks T et al (2006a) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898PubMedCrossRefGoogle Scholar
  5. Behm-Ansmant I, Rehwinkel J, Izaurralde E (2006b) MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 71:523–530PubMedCrossRefGoogle Scholar
  6. Béthune J, Artus-Revel CG, Filipowicz W (2012) Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep 13(8):716–723PubMedCrossRefGoogle Scholar
  7. Bies-Etheve N, Pontier D, Lahmy S et al (2009) RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep 10:649–654PubMedCrossRefGoogle Scholar
  8. Braun JE, Huntzinger E, Fauser M, Izaurralde E (2011) GW182 proteins recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44:120–133PubMedCrossRefGoogle Scholar
  9. Buchberger A (2002) From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol 12:216–221PubMedCrossRefGoogle Scholar
  10. Chekulaeva M, Filipowicz W, Parker R (2009) Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15:794–803PubMedCrossRefGoogle Scholar
  11. Chekulaeva M, Parker R, Filipowicz W (2010) The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 38:6673–6683PubMedCrossRefGoogle Scholar
  12. Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W (2011) miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18:1218–1226PubMedCrossRefGoogle Scholar
  13. Chen CY, Zheng D, Xia Z et al (2009) Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 16:1160–1166PubMedCrossRefGoogle Scholar
  14. Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210PubMedCrossRefGoogle Scholar
  15. Cooke A, Prigge A, Wickens M (2010) Translational repression by deadenylases. J Biol Chem 285:28506–28513PubMedCrossRefGoogle Scholar
  16. Derry MC, Yanagiya A, Martineau Y et al (2006) Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol 71:537–543PubMedCrossRefGoogle Scholar
  17. Ding XC, Großhans H (2009) Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 28:213–222PubMedCrossRefGoogle Scholar
  18. Ding L, Han M (2007) GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol 17:411–416PubMedCrossRefGoogle Scholar
  19. Ding L, Spencer A, Morita K et al (2005) The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell 19:437–447PubMedCrossRefGoogle Scholar
  20. Djuranovic S, Nahvi A, Green A (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240PubMedCrossRefGoogle Scholar
  21. El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi MA, Jacobsen SE, Cooke R, Lagrange T. (2007) Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21:2539–2544PubMedCrossRefGoogle Scholar
  22. Eulalio A, Rehwinkel J, Stricker M et al (2007a) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570PubMedCrossRefGoogle Scholar
  23. Eulalio A, Behm-Ansmant I, Schweizer D et al (2007b) P-body formation is a consequence, not the cause of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981PubMedCrossRefGoogle Scholar
  24. Eulalio A, Huntzinger E, Izaurralde E (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15:346–353PubMedCrossRefGoogle Scholar
  25. Eulalio A, Tritschler F, Izaurralde E (2009a) The GW182 protein family in animal cells: new insights into domains required for miRNA mediated gene silencing. RNA 15:1433–1442PubMedCrossRefGoogle Scholar
  26. Eulalio A, Huntzinger E, Nishihara T et al (2009b) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32PubMedCrossRefGoogle Scholar
  27. Eulalio A, Helms S, Fritzsch C et al (2009c) A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15:1067–1077PubMedCrossRefGoogle Scholar
  28. Eulalio A, Tritschler F, Buettner R et al (2009d) The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 37:2974–2983PubMedCrossRefGoogle Scholar
  29. Eystathioy T, Chan EK, Tenenbaum SA et al (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351PubMedCrossRefGoogle Scholar
  30. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593PubMedCrossRefGoogle Scholar
  31. Fabian MR, Mathonnet G, Sundermeier T et al (2009) Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35:868–880PubMedCrossRefGoogle Scholar
  32. Fabian MR, Cieplak MK, Frank F et al (2011) miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat Struct Mol Biol 18:1211–1217PubMedCrossRefGoogle Scholar
  33. Fukaya T, Tomari Y (2011) PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. EMBO J 30:4998–5009PubMedCrossRefGoogle Scholar
  34. Giraldez AJ, Mishima Y, Rihel J et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79PubMedCrossRefGoogle Scholar
  35. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110PubMedCrossRefGoogle Scholar
  36. Huntzinger E, Braun EJ, Heimstädt S et al (2010) Two PABP-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J 29:4146–4160PubMedCrossRefGoogle Scholar
  37. Iwasaki S, Kawamata T, Tomari Y (2009) Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34:58–67PubMedCrossRefGoogle Scholar
  38. Jakymiw A, Lian S, Eystathioy T et al (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274PubMedCrossRefGoogle Scholar
  39. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412PubMedCrossRefGoogle Scholar
  40. Jinek M, Fabian MR, Coyle SM et al (2010) Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat Struct Mol Biol 17:238–240PubMedCrossRefGoogle Scholar
  41. Kozlov G, Safaee N, Rosenauer A et al (2010) Structural basis of binding of P-body associated protein GW182 and Ataxin-2 by the MLLE domain of poly(A)-binding protein. J Biol Chem 285:13599–13606PubMedCrossRefGoogle Scholar
  42. Kuzuoglu-Öztürk D, Huntzinger E, Schmidt S, Izaurralde E (2012) The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res 40:5651–5665PubMedCrossRefGoogle Scholar
  43. Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596PubMedCrossRefGoogle Scholar
  44. Lazzaretti D, Tournier I, Izaurralde E (2009) The C-terminal domains of human TNRC6A, B and C silence bound transcripts independently of the Argonaute proteins. RNA 15:1059–1066PubMedCrossRefGoogle Scholar
  45. Li S, Lian SL, Moser JJ et al (2008) Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J Cell Sci 121:4134–4144PubMedCrossRefGoogle Scholar
  46. Lian SL, Li S, Abadal GX et al (2009) The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15:804–813PubMedCrossRefGoogle Scholar
  47. Liu J, Rivas FV, Wohlschlegel J et al (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266PubMedGoogle Scholar
  48. Meister G, Landthaler M, Peters L et al (2005) Identification of novel argonaute-associated proteins. Curr Biol 15:2149–2155PubMedCrossRefGoogle Scholar
  49. Mishima Y, Fukao A, Kishimoto T, Sakamoto H, Fujiwara T, Inoue K (2012) Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc Natl Acad Sci USA 109:1104–1109PubMedCrossRefGoogle Scholar
  50. Miyoshi K, Okada TN, Siomi H et al (2009) Characterization of miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 15:1282–1291PubMedCrossRefGoogle Scholar
  51. Moretti F, Kaiser C, Zdanowicz-Specht A, Hentze MW (2012) PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol 19:603–608PubMedCrossRefGoogle Scholar
  52. Partridge JF, DeBeauchamp JL, Kosinski AM et al (2007) Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol Cell 26:593–602PubMedCrossRefGoogle Scholar
  53. Piao X, Zhang X, Wu L et al (2010) CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol Cell Biol 30:1486–1494PubMedCrossRefGoogle Scholar
  54. Rehwinkel J, Behm-Ansmant I, Gatfield D et al (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647PubMedCrossRefGoogle Scholar
  55. Takimoto K, Wakiyama M, Yokoyama S (2009) Mammalian GW182 contains multiple Argonaute binding sites and functions in microRNA-mediated translational repression. RNA 15:1078–1089PubMedCrossRefGoogle Scholar
  56. Till S, Lejeune E, Thermann R et al (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14:897–903PubMedCrossRefGoogle Scholar
  57. Wakiyama M, Takimoto K, Ohara O et al (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21:1857–1862PubMedCrossRefGoogle Scholar
  58. Walters RW, Bradrick SS, Gromeier M (2010) Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA 16:239–250PubMedCrossRefGoogle Scholar
  59. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039PubMedCrossRefGoogle Scholar
  60. Wu E, Thivierge C, Flamand M et al (2010) Pervasive and cooperative deadenylation of 3′UTRs by embryonic MicroRNA families. Mol Cell 40:558–570PubMedCrossRefGoogle Scholar
  61. Yao B, Li S, Jung HM et al (2011) Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 39:2534–2547PubMedCrossRefGoogle Scholar
  62. Zdanowicz A, Thermann R, Kowalska J et al (2009) Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol Cell 35:881–888PubMedCrossRefGoogle Scholar
  63. Zekri L, Huntzinger E, Heimstädt S et al (2009) The silencing domain of GW182 interacts with PABP to promote translational repression and degradation of miRNA targets and is required for target release. Mol Cell Biol 29:6220–6231PubMedCrossRefGoogle Scholar
  64. Zhang L, Ding L, Cheung TH et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613PubMedCrossRefGoogle Scholar
  65. Zipprich JT, Bhattacharyya S, Mathys H et al (2009) Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15:781–793PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Joerg E. Braun
    • 1
  • Eric Huntzinger
    • 1
  • Elisa Izaurralde
    • 1
  1. 1.Department of BiochemistryMax Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations